These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 27665593)

  • 21. On the stability of different experimental dimeric structures of the SL1 sequence from the genomic RNA of HIV-1 in solution: a molecular dynamics simulation and electrophoresis study.
    Aci S; Gangneux L; Paoletti J; Genest D
    Biopolymers; 2004 Jun; 74(3):177-88. PubMed ID: 15150793
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting RNA Structure with Vfold.
    Zhao C; Xu X; Chen SJ
    Methods Mol Biol; 2017; 1654():3-15. PubMed ID: 28986779
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tertiary structure prediction of RNA-RNA complexes using a secondary structure and fragment-based method.
    Yamasaki S; Hirokawa T; Asai K; Fukui K
    J Chem Inf Model; 2014 Feb; 54(2):672-82. PubMed ID: 24479711
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crystal structures of coaxially stacked kissing complexes of the HIV-1 RNA dimerization initiation site.
    Ennifar E; Walter P; Ehresmann B; Ehresmann C; Dumas P
    Nat Struct Biol; 2001 Dec; 8(12):1064-8. PubMed ID: 11702070
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Base pair probability estimates improve the prediction accuracy of RNA non-canonical base pairs.
    Sloma MF; Mathews DH
    PLoS Comput Biol; 2017 Nov; 13(11):e1005827. PubMed ID: 29107980
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Swellix: a computational tool to explore RNA conformational space.
    Sloat N; Liu JW; Schroeder SJ
    BMC Bioinformatics; 2017 Nov; 18(1):504. PubMed ID: 29157200
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conformational entropy of the RNA phosphate backbone and its contribution to the folding free energy.
    Mak CH; Matossian T; Chung WY
    Biophys J; 2014 Apr; 106(7):1497-507. PubMed ID: 24703311
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bimodal loop-loop interactions increase the affinity of RNA aptamers for HIV-1 RNA structures.
    Boucard D; Toulmé JJ; Di Primo C
    Biochemistry; 2006 Feb; 45(5):1518-24. PubMed ID: 16445294
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An RNA folding algorithm including pseudoknots based on dynamic weighted matching.
    Liu H; Xu D; Shao J; Wang Y
    Comput Biol Chem; 2006 Feb; 30(1):72-6. PubMed ID: 16321572
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure-Function Model for Kissing Loop Interactions That Initiate Dimerization of Ty1 RNA.
    Gamache ER; Doh JH; Ritz J; Laederach A; Bellaousov S; Mathews DH; Curcio MJ
    Viruses; 2017 Apr; 9(5):. PubMed ID: 28445416
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A New Method to Predict RNA Secondary Structure Based on RNA Folding Simulation.
    Liu Y; Zhao Q; Zhang H; Xu R; Li Y; Wei L
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(5):990-995. PubMed ID: 26552091
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computing the conformational entropy for RNA folds.
    Liu L; Chen SJ
    J Chem Phys; 2010 Jun; 132(23):235104. PubMed ID: 20572741
    [TBL] [Abstract][Full Text] [Related]  

  • 33. VfoldCPX Server: Predicting RNA-RNA Complex Structure and Stability.
    Xu X; Chen SJ
    PLoS One; 2016; 11(9):e0163454. PubMed ID: 27657918
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence that a kissing loop structure facilitates genomic RNA dimerisation in HIV-1.
    Haddrick M; Lear AL; Cann AJ; Heaphy S
    J Mol Biol; 1996 May; 259(1):58-68. PubMed ID: 8648648
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultrastructure of HIV-1 genomic RNA.
    Höglund S; Ohagen A; Goncalves J; Panganiban AT; Gabuzda D
    Virology; 1997 Jul; 233(2):271-9. PubMed ID: 9217051
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Free energy minimization to predict RNA secondary structures and computational RNA design.
    Churkin A; Weinbrand L; Barash D
    Methods Mol Biol; 2015; 1269():3-16. PubMed ID: 25577369
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular dynamics simulation for probing the flexibility of the 35 nucleotide SL1 sequence kissing complex from HIV-1Lai genomic RNA.
    Mazier S; Genest D
    J Biomol Struct Dyn; 2007 Apr; 24(5):471-9. PubMed ID: 17313192
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conformational pathway for the kissing complex-->extended dimer transition of the SL1 stem-loop from genomic HIV-1 RNA as monitored by targeted molecular dynamics techniques.
    Aci S; Mazier S; Genest D
    J Mol Biol; 2005 Aug; 351(3):520-30. PubMed ID: 16023135
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insight into the intrinsic flexibility of the SL1 stem-loop from genomic RNA of HIV-1 as probed by molecular dynamics simulation.
    Mazier S; Genest D
    Biopolymers; 2008 Mar; 89(3):187-96. PubMed ID: 18008323
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of the 5' TAR stem--loop and the U5-AUG duplex in dimerization of HIV-1 genomic RNA.
    Song R; Kafaie J; Laughrea M
    Biochemistry; 2008 Mar; 47(10):3283-93. PubMed ID: 18278873
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.