These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 27665593)

  • 41. Simultaneous prediction of RNA secondary structure and helix coaxial stacking.
    Shareghi P; Wang Y; Malmberg R; Cai L
    BMC Genomics; 2012 Jun; 13 Suppl 3(Suppl 3):S7. PubMed ID: 22759616
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Computational study of stability of an H-H-type pseudoknot motif.
    Wang J; Zhao Y; Wang J; Xiao Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062705. PubMed ID: 26764725
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Solution RNA structures of the HIV-1 dimerization initiation site in the kissing-loop and extended-duplex dimers.
    Baba S; Takahashi K; Noguchi S; Takaku H; Koyanagi Y; Yamamoto N; Kawai G
    J Biochem; 2005 Nov; 138(5):583-92. PubMed ID: 16272570
    [TBL] [Abstract][Full Text] [Related]  

  • 44. NMR structure of stem-loop SL2 of the HIV-1 psi RNA packaging signal reveals a novel A-U-A base-triple platform.
    Amarasinghe GK; De Guzman RN; Turner RB; Summers MF
    J Mol Biol; 2000 May; 299(1):145-56. PubMed ID: 10860728
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A new NMR solution structure of the SL1 HIV-1Lai loop-loop dimer.
    Kieken F; Paquet F; Brulé F; Paoletti J; Lancelot G
    Nucleic Acids Res; 2006; 34(1):343-52. PubMed ID: 16410614
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Predicting structures and stabilities for H-type pseudoknots with interhelix loops.
    Cao S; Chen SJ
    RNA; 2009 Apr; 15(4):696-706. PubMed ID: 19237463
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data.
    Parisien M; Major F
    Nature; 2008 Mar; 452(7183):51-5. PubMed ID: 18322526
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Kissing-loop model of HIV-1 genome dimerization: HIV-1 RNAs can assume alternative dimeric forms, and all sequences upstream or downstream of hairpin 248-271 are dispensable for dimer formation.
    Laughrea M; Jetté L
    Biochemistry; 1996 Feb; 35(5):1589-98. PubMed ID: 8634290
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Topological constraints of RNA pseudoknotted and loop-kissing motifs: applications to three-dimensional structure prediction.
    Xu X; Chen SJ
    Nucleic Acids Res; 2020 Jul; 48(12):6503-6512. PubMed ID: 32491164
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Docking simulation of polyamines on a kissing-loop RNA dimer.
    Imai M; Chikatsu D; Inomata E; Oshima T; Kawai G
    Nucleic Acids Symp Ser (Oxf); 2009; (53):273-4. PubMed ID: 19749366
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Computational methods toward accurate RNA structure prediction using coarse-grained and all-atom models.
    Krokhotin A; Dokholyan NV
    Methods Enzymol; 2015; 553():65-89. PubMed ID: 25726461
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Network Properties of the Ensemble of RNA Structures.
    Clote P; Bayegan A
    PLoS One; 2015; 10(10):e0139476. PubMed ID: 26488894
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Discretized torsional dynamics and the folding of an RNA chain.
    Fernández A; Salthú R; Cendra H
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt B):2105-19. PubMed ID: 11970003
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Discrete state model and accurate estimation of loop entropy of RNA secondary structures.
    Zhang J; Lin M; Chen R; Wang W; Liang J
    J Chem Phys; 2008 Mar; 128(12):125107. PubMed ID: 18376982
    [TBL] [Abstract][Full Text] [Related]  

  • 55. JAR3D Webserver: Scoring and aligning RNA loop sequences to known 3D motifs.
    Roll J; Zirbel CL; Sweeney B; Petrov AI; Leontis N
    Nucleic Acids Res; 2016 Jul; 44(W1):W320-7. PubMed ID: 27235417
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Prediction of RNA base pairing probabilities on massively parallel computers.
    Fekete M; Hofacker IL; Stadler PF
    J Comput Biol; 2000; 7(1-2):171-82. PubMed ID: 10890394
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Conformations of flanking bases in HIV-1 RNA DIS kissing complexes studied by molecular dynamics.
    Réblová K; Fadrná E; Sarzynska J; Kulinski T; Kulhánek P; Ennifar E; Koca J; Sponer J
    Biophys J; 2007 Dec; 93(11):3932-49. PubMed ID: 17704156
    [TBL] [Abstract][Full Text] [Related]  

  • 58. RNA LEGO: magnesium-dependent formation of specific RNA assemblies through kissing interactions.
    Horiya S; Li X; Kawai G; Saito R; Katoh A; Kobayashi K; Harada K
    Chem Biol; 2003 Jul; 10(7):645-54. PubMed ID: 12890538
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Conformational transitions of flanking purines in HIV-1 RNA dimerization initiation site kissing complexes studied by CHARMM explicit solvent molecular dynamics.
    Sarzyńska J; Réblová K; Sponer J; Kuliński T
    Biopolymers; 2008 Sep; 89(9):732-46. PubMed ID: 18412127
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A method for finding optimal rna secondary structures using a new entropy model (vsfold).
    Dawson W; Fujiwara K; Kawai G; Futamura Y; Yamamoto K
    Nucleosides Nucleotides Nucleic Acids; 2006; 25(2):171-89. PubMed ID: 16541960
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.