These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 27665593)

  • 61. SL1 revisited: functional analysis of the structure and conformation of HIV-1 genome RNA.
    Sakuragi S; Yokoyama M; Shioda T; Sato H; Sakuragi JI
    Retrovirology; 2016 Nov; 13(1):79. PubMed ID: 27835956
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Annotation of tertiary interactions in RNA structures reveals variations and correlations.
    Xin Y; Laing C; Leontis NB; Schlick T
    RNA; 2008 Dec; 14(12):2465-77. PubMed ID: 18957492
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Novel and efficient RNA secondary structure prediction using hierarchical folding.
    Jabbari H; Condon A; Zhao S
    J Comput Biol; 2008 Mar; 15(2):139-63. PubMed ID: 18312147
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Dimer initiation sequence of HIV-1Lai genomic RNA: NMR solution structure of the extended duplex.
    Girard F; Barbault F; Gouyette C; Huynh-Dinh T; Paoletti J; Lancelot G
    J Biomol Struct Dyn; 1999 Jun; 16(6):1145-57. PubMed ID: 10447199
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A proton-coupled dynamic conformational switch in the HIV-1 dimerization initiation site kissing complex.
    Mihailescu MR; Marino JP
    Proc Natl Acad Sci U S A; 2004 Feb; 101(5):1189-94. PubMed ID: 14734802
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Exact calculation of loop formation probability identifies folding motifs in RNA secondary structures.
    Sloma MF; Mathews DH
    RNA; 2016 Dec; 22(12):1808-1818. PubMed ID: 27852924
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Involvement of a GNRA tetraloop in long-range RNA tertiary interactions.
    Jaeger L; Michel F; Westhof E
    J Mol Biol; 1994 Mar; 236(5):1271-6. PubMed ID: 7510342
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A Unified Dynamic Programming Framework for the Analysis of Interacting Nucleic Acid Strands: Enhanced Models, Scalability, and Speed.
    Fornace ME; Porubsky NJ; Pierce NA
    ACS Synth Biol; 2020 Oct; 9(10):2665-2678. PubMed ID: 32910644
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The major HIV-1 packaging signal is an extended bulged stem loop whose structure is altered on interaction with the Gag polyprotein.
    Zeffman A; Hassard S; Varani G; Lever A
    J Mol Biol; 2000 Apr; 297(4):877-93. PubMed ID: 10736224
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A sensitivity analysis of RNA folding nearest neighbor parameters identifies a subset of free energy parameters with the greatest impact on RNA secondary structure prediction.
    Zuber J; Sun H; Zhang X; McFadyen I; Mathews DH
    Nucleic Acids Res; 2017 Jun; 45(10):6168-6176. PubMed ID: 28334976
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Interactions of cations with RNA loop-loop complexes.
    Singh A; Sethaphong L; Yingling YG
    Biophys J; 2011 Aug; 101(3):727-35. PubMed ID: 21806941
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Practicality and time complexity of a sparsified RNA folding algorithm.
    Dimitrieva S; Bucher P
    J Bioinform Comput Biol; 2012 Apr; 10(2):1241007. PubMed ID: 22809342
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas.
    Petrov AI; Zirbel CL; Leontis NB
    RNA; 2013 Oct; 19(10):1327-40. PubMed ID: 23970545
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Single-Molecule Fluorescence Reveals Commonalities and Distinctions among Natural and in Vitro-Selected RNA Tertiary Motifs in a Multistep Folding Pathway.
    Bonilla S; Limouse C; Bisaria N; Gebala M; Mabuchi H; Herschlag D
    J Am Chem Soc; 2017 Dec; 139(51):18576-18589. PubMed ID: 29185740
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Structure folding of RNA kissing complexes in salt solutions: predicting 3D structure, stability, and folding pathway.
    Jin L; Tan YL; Wu Y; Wang X; Shi YZ; Tan ZJ
    RNA; 2019 Nov; 25(11):1532-1548. PubMed ID: 31391217
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Exploring the electrostatic energy landscape for tetraloop-receptor docking.
    He Z; Zhu Y; Chen SJ
    Phys Chem Chem Phys; 2014 Apr; 16(14):6367-75. PubMed ID: 24322001
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Predicting RNA Scaffolds with a Hybrid Method of Vfold3D and VfoldLA.
    Xu X; Chen SJ
    Methods Mol Biol; 2021; 2323():1-11. PubMed ID: 34086269
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Vfold2D-MC: A Physics-Based Hybrid Model for Predicting RNA Secondary Structure Folding.
    Cheng Y; Zhang S; Xu X; Chen SJ
    J Phys Chem B; 2021 Sep; 125(36):10108-10118. PubMed ID: 34473508
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Asymptotic distribution of motifs in a stochastic context-free grammar model of RNA folding.
    Poznanović S; Heitsch CE
    J Math Biol; 2014 Dec; 69(6-7):1743-72. PubMed ID: 24384698
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Coarse-grained prediction of RNA loop structures.
    Liu L; Chen SJ
    PLoS One; 2012; 7(11):e48460. PubMed ID: 23144887
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.