These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 27665680)

  • 21. In silico tumor control induced via alternating immunostimulating and immunosuppressive phases.
    Reppas AI; Alfonso JC; Hatzikirou H
    Virulence; 2016; 7(2):174-86. PubMed ID: 26305801
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chaos synchronization and Nelder-Mead search for parameter estimation in nonlinear pharmacological systems: Estimating tumor antigenicity in a model of immunotherapy.
    Pillai N; Craig M; Dokoumetzidis A; Schwartz SL; Bies R; Freedman I
    Prog Biophys Mol Biol; 2018 Nov; 139():23-30. PubMed ID: 29928905
    [TBL] [Abstract][Full Text] [Related]  

  • 23. How the Magnitude of Prey Genetic Variation Alters Predator-Prey Eco-Evolutionary Dynamics.
    Cortez MH
    Am Nat; 2016 Sep; 188(3):329-41. PubMed ID: 27501090
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanoparticle-based immunotherapy for cancer.
    Shao K; Singha S; Clemente-Casares X; Tsai S; Yang Y; Santamaria P
    ACS Nano; 2015 Jan; 9(1):16-30. PubMed ID: 25469470
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On optimal chemotherapy with a strongly targeted agent for a model of tumor-immune system interactions with generalized logistic growth.
    Ledzewicz U; Olumoye O; Schättler H
    Math Biosci Eng; 2013 Jun; 10(3):787-802. PubMed ID: 23906150
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cancer self remission and tumor stability-- a stochastic approach.
    Sarkar RR; Banerjee S
    Math Biosci; 2005 Jul; 196(1):65-81. PubMed ID: 15946708
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Immune based therapies in cancer.
    Krüger C; Greten TF; Korangy F
    Histol Histopathol; 2007 Jun; 22(6):687-96. PubMed ID: 17357098
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The multifaceted role of autophagy in tumor evasion from immune surveillance.
    Janji B; Viry E; Moussay E; Paggetti J; Arakelian T; Mgrditchian T; Messai Y; Noman MZ; Van Moer K; Hasmim M; Mami-Chouaib F; Berchem G; Chouaib S
    Oncotarget; 2016 Apr; 7(14):17591-607. PubMed ID: 26910842
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Global sensitivity analysis and model-based reactive scheduling of targeted cancer immunotherapy.
    Kiran KL; Lakshminarayanan S
    Biosystems; 2010 Aug; 101(2):117-26. PubMed ID: 20639123
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Immunotherapy: new insights].
    Geissler M; Weth R
    Praxis (Bern 1994); 2002 Dec; 91(51-52):2236-46. PubMed ID: 12564040
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Immunomodulating and Immunoresistance Properties of Cancer-Initiating Cells: Implications for the Clinical Success of Immunotherapy.
    Maccalli C; Parmiani G; Ferrone S
    Immunol Invest; 2017 Apr; 46(3):221-238. PubMed ID: 28287848
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanoparticles for tumor immunotherapy.
    Zang X; Zhao X; Hu H; Qiao M; Deng Y; Chen D
    Eur J Pharm Biopharm; 2017 Jun; 115():243-256. PubMed ID: 28323111
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strategies of antigen-specific T-cell-based immunotherapy for cancer.
    Liu SH; Zhang M; Zhang WG
    Cancer Biother Radiopharm; 2005 Oct; 20(5):491-501. PubMed ID: 16248765
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Overcoming tumor-mediated immunosuppression.
    Schlößer HA; Theurich S; Shimabukuro-Vornhagen A; Holtick U; Stippel DL; von Bergwelt-Baildon M
    Immunotherapy; 2014; 6(9):973-88. PubMed ID: 25341119
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamic analysis of a fractional order delayed predator-prey system with harvesting.
    Song P; Zhao H; Zhang X
    Theory Biosci; 2016 Jun; 135(1-2):59-72. PubMed ID: 27026265
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stability of equilibria of a predator-prey model of phenotype evolution.
    Cuadrado S
    Math Biosci Eng; 2009 Oct; 6(4):701-18. PubMed ID: 19835425
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cancer immunotherapy: harnessing the immune system to battle cancer.
    Yang Y
    J Clin Invest; 2015 Sep; 125(9):3335-7. PubMed ID: 26325031
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metastases in immune-mediated dormancy: a new opportunity for targeting cancer.
    Romero I; Garrido F; Garcia-Lora AM
    Cancer Res; 2014 Dec; 74(23):6750-7. PubMed ID: 25411345
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High immunosuppressive burden in cancer patients: a major hurdle for cancer immunotherapy.
    Kalathil SG; Thanavala Y
    Cancer Immunol Immunother; 2016 Jul; 65(7):813-9. PubMed ID: 26910314
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Immunotherapeutic strategies employing RNA interference technology for the control of cancers.
    Mao CP; Hung CF; Wu TC
    J Biomed Sci; 2007 Jan; 14(1):15-29. PubMed ID: 17103251
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.