These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 2766581)

  • 41. Presynaptic autoinhibition of the electrically evoked dopamine release studied in the rat olfactory tubercle by in vivo electrochemistry.
    Suaud-Chagny MF; Ponec J; Gonon F
    Neuroscience; 1991; 45(3):641-52. PubMed ID: 1775239
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Localization of the face area of human sensorimotor cortex by intracranial recording of somatosensory evoked potentials.
    McCarthy G; Allison T; Spencer DD
    J Neurosurg; 1993 Dec; 79(6):874-84. PubMed ID: 8246056
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of pentobarbital and ketamine-xylazine anaesthesia on somatosensory, brainstem auditory and peripheral sensory-motor responses in the rat.
    Goss-Sampson MA; Kriss A
    Lab Anim; 1991 Oct; 25(4):360-6. PubMed ID: 1753698
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrophysiological assessment of central and peripheral motor routes to the lingual muscles.
    Muellbacher W; Mathis J; Hess CW
    J Neurol Neurosurg Psychiatry; 1994 Mar; 57(3):309-15. PubMed ID: 8158177
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A simple method for recording motor evoked potentials of lingual muscles to transcranial magnetic and peripheral electrical stimulation.
    Ghezzi A; Baldini S
    Electroencephalogr Clin Neurophysiol; 1998 Apr; 109(2):114-8. PubMed ID: 9741801
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Orexin A decreases ketamine-induced anesthesia time in the rat: the relevance to brain noradrenergic neuronal activity.
    Tose R; Kushikata T; Yoshida H; Kudo M; Furukawa K; Ueno S; Hirota K
    Anesth Analg; 2009 Feb; 108(2):491-5. PubMed ID: 19151277
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spinal and cortical evoked potential studies in the ketamine-anesthetized rabbit: fentanyl exerts component-specific, naloxone-reversible changes dependent on stimulus intensity.
    Lee VC
    Anesth Analg; 1994 Feb; 78(2):280-6. PubMed ID: 8311280
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Membrane and contractile properties of the dog ciliary muscle.
    Ito Y; Yoshitomi T
    Br J Pharmacol; 1986 Jul; 88(3):629-38. PubMed ID: 3742151
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Further studies of the neural mechanisms of ketamine-induced anesthesia in the rhesus monkey.
    Sparks DL; Corssen G; Aizenman B; Black J
    Anesth Analg; 1975; 54(2):189-95. PubMed ID: 1168426
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Low dose propofol as a supplement to ketamine-based anesthesia during intraoperative monitoring of motor-evoked potentials.
    Kawaguchi M; Sakamoto T; Inoue S; Kakimoto M; Furuya H; Morimoto T; Sakaki T
    Spine (Phila Pa 1976); 2000 Apr; 25(8):974-9. PubMed ID: 10767811
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of haloperidol and pimozide on acetylcholine output from the cerebral cortex in rats and guinea pigs.
    Casamenti F; Bianchi C; Beani L; Pepeu G
    Eur J Pharmacol; 1980 Jul; 65(2-3):279-84. PubMed ID: 7398789
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Topography of the human motor potential.
    Vaughan HG; Costa LD; Ritter W
    Electroencephalogr Clin Neurophysiol; 1968 Jul; 25(1):1-10. PubMed ID: 4174778
    [No Abstract]   [Full Text] [Related]  

  • 53. Cortico-centric effects of general anesthetics on cerebrocortical evoked potentials.
    Voss LJ; Sleigh JW
    Neurosci Bull; 2015 Dec; 31(6):697-704. PubMed ID: 26480876
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Corticofugal inhibitory effects on lingually induced postsynaptic potentials in cat hypoglossal motoneurons.
    Takata M; Tomomune N; Nagahama T
    Neuroscience; 1987 Nov; 23(2):625-30. PubMed ID: 3437983
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of touch- and laser heat-evoked cortical field potentials in conscious rats.
    Shaw FZ; Chen RF; Tsao HW; Yen CT
    Brain Res; 1999 Apr; 824(2):183-96. PubMed ID: 10196448
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Blockade of cortical spreading depression in electrically and chemically stimulated areas of cerebral cortex in rats.
    Koroleva VI; Bures J
    Electroencephalogr Clin Neurophysiol; 1980 Jan; 48(1):1-15. PubMed ID: 6153312
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sequential activation of microcircuits underlying somatosensory-evoked potentials in rat neocortex.
    Jellema T; Brunia CH; Wadman WJ
    Neuroscience; 2004; 129(2):283-95. PubMed ID: 15501587
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of incisor extraction on jaw and tongue motor representations within face sensorimotor cortex of adult rats.
    Avivi-Arber L; Lee JC; Sessle BJ
    J Comp Neurol; 2010 Apr; 518(7):1030-45. PubMed ID: 20127805
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Generator locations of movement-related potentials with tongue protrusions and vocalizations: subdural recording in human.
    Ikeda A; Lüders HO; Burgess RC; Sakamoto A; Klem GH; Morris HH; Shibasaki H
    Electroencephalogr Clin Neurophysiol; 1995 Jul; 96(4):310-28. PubMed ID: 7635076
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ketamine effects on somatosensory cortical single neurons and on behavior in rats.
    Patel IM; Chapin JK
    Anesth Analg; 1990 Jun; 70(6):635-44. PubMed ID: 2344058
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.