BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 27665922)

  • 21. Plasmonic nanoclusters with rotational symmetry: polarization-invariant far-field response vs changing near-field distribution.
    Rahmani M; Yoxall E; Hopkins B; Sonnefraud Y; Kivshar Y; Hong M; Phillips C; Maier SA; Miroshnichenko AE
    ACS Nano; 2013 Dec; 7(12):11138-46. PubMed ID: 24187975
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thiolated DNA-based chemistry and control in the structure and optical properties of plasmonic nanoparticles with ultrasmall interior nanogap.
    Oh JW; Lim DK; Kim GH; Suh YD; Nam JM
    J Am Chem Soc; 2014 Oct; 136(40):14052-9. PubMed ID: 25198151
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mesoporous silica-coated plasmonic nanostructures for surface-enhanced Raman scattering detection and photothermal therapy.
    Yang J; Shen D; Zhou L; Li W; Fan J; El-Toni AM; Zhang WX; Zhang F; Zhao D
    Adv Healthc Mater; 2014 Oct; 3(10):1620-8. PubMed ID: 24665061
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optical manipulation of individual strongly absorbing platinum nanoparticles.
    Samadi A; Bendix PM; Oddershede LB
    Nanoscale; 2017 Nov; 9(46):18449-18455. PubMed ID: 29159358
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimizing the electric field around solid and core-shell alloy nanostructures for near-field applications.
    Montaño-Priede L; Peña-Rodríguez O; Rivera A; Guerrero-Martínez A; Pal U
    Nanoscale; 2016 Aug; 8(31):14836-45. PubMed ID: 27451969
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent progress of gold nanostructures and their applications.
    Dahan KA; Li Y; Xu J; Kan C
    Phys Chem Chem Phys; 2023 Jul; 25(28):18545-18576. PubMed ID: 37409495
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Double-walled Au nanocage/SiO2 nanorattles: integrating SERS imaging, drug delivery and photothermal therapy.
    Hu F; Zhang Y; Chen G; Li C; Wang Q
    Small; 2015 Feb; 11(8):985-93. PubMed ID: 25348096
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mesoporous SnO2-coated metal nanoparticles with enhanced catalytic efficiency.
    Zhou N; Polavarapu L; Wang Q; Xu QH
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4844-50. PubMed ID: 25674821
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancing colloidal metallic nanocatalysis: sharp edges and corners for solid nanoparticles and cage effect for hollow ones.
    Mahmoud MA; Narayanan R; El-Sayed MA
    Acc Chem Res; 2013 Aug; 46(8):1795-805. PubMed ID: 23387515
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity.
    Li N; Zhao P; Astruc D
    Angew Chem Int Ed Engl; 2014 Feb; 53(7):1756-89. PubMed ID: 24421264
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hollow Au-Cu2O Core-Shell Nanoparticles with Geometry-Dependent Optical Properties as Efficient Plasmonic Photocatalysts under Visible Light.
    Lu B; Liu A; Wu H; Shen Q; Zhao T; Wang J
    Langmuir; 2016 Mar; 32(12):3085-94. PubMed ID: 26954100
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasmonic/Nonlinear Optical Material Core/Shell Nanorods as Nanoscale Plasmon Modulators and Optical Voltage Sensors.
    Yin A; He Q; Lin Z; Luo L; Liu Y; Yang S; Wu H; Ding M; Huang Y; Duan X
    Angew Chem Int Ed Engl; 2016 Jan; 55(2):583-7. PubMed ID: 26783058
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Numerical Study on the Surface Plasmon Resonance Tunability of Spherical and Non-Spherical Core-Shell Dimer Nanostructures.
    Fernandes J; Kang S
    Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34209155
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancement of Nonlinear Optical Scattering by Gold Nanoparticles through Aggregation-Induced Plasmon Coupling in the Near-Infrared.
    de Coene Y; Deschaume O; Zhang Y; Billen A; He J; Seré S; Knoppe S; Van Cleuvenbergen S; Verbiest T; Clays K; Ye J; Bartic C
    Chemphyschem; 2019 Jul; 20(13):1765-1774. PubMed ID: 31020783
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Point-by-point near-field optical energy deposition around plasmonic nanospheres in absorbing media.
    Harrison RK; Ben-Yakar A
    J Opt Soc Am A Opt Image Sci Vis; 2015 Aug; 32(8):1523-35. PubMed ID: 26367296
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multishell Au/Ag/SiO2 nanorods with tunable optical properties as single particle orientation and rotational tracking probes.
    Chen K; Lin CC; Vela J; Fang N
    Anal Chem; 2015 Apr; 87(8):4096-9. PubMed ID: 25849492
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasmonic rod-in-shell nanoparticles for photothermal therapy.
    Wang S; Xu H; Ye J
    Phys Chem Chem Phys; 2014 Jun; 16(24):12275-81. PubMed ID: 24818860
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dual broadband near-infrared perfect absorber based on a hybrid plasmonic-photonic microstructure.
    Liu Z; Zhan P; Chen J; Tang C; Yan Z; Chen Z; Wang Z
    Opt Express; 2013 Feb; 21(3):3021-30. PubMed ID: 23481760
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Au@Ag core-shell nanocubes: epitaxial growth synthesis and surface-enhanced Raman scattering performance.
    Liu Y; Zhou J; Wang B; Jiang T; Ho HP; Petti L; Mormile P
    Phys Chem Chem Phys; 2015 Mar; 17(10):6819-26. PubMed ID: 25670345
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.