These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 27665922)
21. Plasmonic nanoclusters with rotational symmetry: polarization-invariant far-field response vs changing near-field distribution. Rahmani M; Yoxall E; Hopkins B; Sonnefraud Y; Kivshar Y; Hong M; Phillips C; Maier SA; Miroshnichenko AE ACS Nano; 2013 Dec; 7(12):11138-46. PubMed ID: 24187975 [TBL] [Abstract][Full Text] [Related]
22. Thiolated DNA-based chemistry and control in the structure and optical properties of plasmonic nanoparticles with ultrasmall interior nanogap. Oh JW; Lim DK; Kim GH; Suh YD; Nam JM J Am Chem Soc; 2014 Oct; 136(40):14052-9. PubMed ID: 25198151 [TBL] [Abstract][Full Text] [Related]
23. Mesoporous silica-coated plasmonic nanostructures for surface-enhanced Raman scattering detection and photothermal therapy. Yang J; Shen D; Zhou L; Li W; Fan J; El-Toni AM; Zhang WX; Zhang F; Zhao D Adv Healthc Mater; 2014 Oct; 3(10):1620-8. PubMed ID: 24665061 [TBL] [Abstract][Full Text] [Related]
25. Optimizing the electric field around solid and core-shell alloy nanostructures for near-field applications. Montaño-Priede L; Peña-Rodríguez O; Rivera A; Guerrero-Martínez A; Pal U Nanoscale; 2016 Aug; 8(31):14836-45. PubMed ID: 27451969 [TBL] [Abstract][Full Text] [Related]
26. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. Lee KS; El-Sayed MA J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772 [TBL] [Abstract][Full Text] [Related]
27. Recent progress of gold nanostructures and their applications. Dahan KA; Li Y; Xu J; Kan C Phys Chem Chem Phys; 2023 Jul; 25(28):18545-18576. PubMed ID: 37409495 [TBL] [Abstract][Full Text] [Related]
28. Double-walled Au nanocage/SiO2 nanorattles: integrating SERS imaging, drug delivery and photothermal therapy. Hu F; Zhang Y; Chen G; Li C; Wang Q Small; 2015 Feb; 11(8):985-93. PubMed ID: 25348096 [TBL] [Abstract][Full Text] [Related]
29. Mesoporous SnO2-coated metal nanoparticles with enhanced catalytic efficiency. Zhou N; Polavarapu L; Wang Q; Xu QH ACS Appl Mater Interfaces; 2015 Mar; 7(8):4844-50. PubMed ID: 25674821 [TBL] [Abstract][Full Text] [Related]
30. Enhancing colloidal metallic nanocatalysis: sharp edges and corners for solid nanoparticles and cage effect for hollow ones. Mahmoud MA; Narayanan R; El-Sayed MA Acc Chem Res; 2013 Aug; 46(8):1795-805. PubMed ID: 23387515 [TBL] [Abstract][Full Text] [Related]
31. Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity. Li N; Zhao P; Astruc D Angew Chem Int Ed Engl; 2014 Feb; 53(7):1756-89. PubMed ID: 24421264 [TBL] [Abstract][Full Text] [Related]
32. Hollow Au-Cu2O Core-Shell Nanoparticles with Geometry-Dependent Optical Properties as Efficient Plasmonic Photocatalysts under Visible Light. Lu B; Liu A; Wu H; Shen Q; Zhao T; Wang J Langmuir; 2016 Mar; 32(12):3085-94. PubMed ID: 26954100 [TBL] [Abstract][Full Text] [Related]
33. Plasmonic/Nonlinear Optical Material Core/Shell Nanorods as Nanoscale Plasmon Modulators and Optical Voltage Sensors. Yin A; He Q; Lin Z; Luo L; Liu Y; Yang S; Wu H; Ding M; Huang Y; Duan X Angew Chem Int Ed Engl; 2016 Jan; 55(2):583-7. PubMed ID: 26783058 [TBL] [Abstract][Full Text] [Related]
34. Numerical Study on the Surface Plasmon Resonance Tunability of Spherical and Non-Spherical Core-Shell Dimer Nanostructures. Fernandes J; Kang S Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34209155 [TBL] [Abstract][Full Text] [Related]
35. Enhancement of Nonlinear Optical Scattering by Gold Nanoparticles through Aggregation-Induced Plasmon Coupling in the Near-Infrared. de Coene Y; Deschaume O; Zhang Y; Billen A; He J; Seré S; Knoppe S; Van Cleuvenbergen S; Verbiest T; Clays K; Ye J; Bartic C Chemphyschem; 2019 Jul; 20(13):1765-1774. PubMed ID: 31020783 [TBL] [Abstract][Full Text] [Related]
36. Point-by-point near-field optical energy deposition around plasmonic nanospheres in absorbing media. Harrison RK; Ben-Yakar A J Opt Soc Am A Opt Image Sci Vis; 2015 Aug; 32(8):1523-35. PubMed ID: 26367296 [TBL] [Abstract][Full Text] [Related]
37. Multishell Au/Ag/SiO2 nanorods with tunable optical properties as single particle orientation and rotational tracking probes. Chen K; Lin CC; Vela J; Fang N Anal Chem; 2015 Apr; 87(8):4096-9. PubMed ID: 25849492 [TBL] [Abstract][Full Text] [Related]
38. Plasmonic rod-in-shell nanoparticles for photothermal therapy. Wang S; Xu H; Ye J Phys Chem Chem Phys; 2014 Jun; 16(24):12275-81. PubMed ID: 24818860 [TBL] [Abstract][Full Text] [Related]
39. Dual broadband near-infrared perfect absorber based on a hybrid plasmonic-photonic microstructure. Liu Z; Zhan P; Chen J; Tang C; Yan Z; Chen Z; Wang Z Opt Express; 2013 Feb; 21(3):3021-30. PubMed ID: 23481760 [TBL] [Abstract][Full Text] [Related]
40. Au@Ag core-shell nanocubes: epitaxial growth synthesis and surface-enhanced Raman scattering performance. Liu Y; Zhou J; Wang B; Jiang T; Ho HP; Petti L; Mormile P Phys Chem Chem Phys; 2015 Mar; 17(10):6819-26. PubMed ID: 25670345 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]