These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
797 related articles for article (PubMed ID: 27666168)
1. Association between chest compression rates and clinical outcomes following in-hospital cardiac arrest at an academic tertiary hospital. Kilgannon JH; Kirchhoff M; Pierce L; Aunchman N; Trzeciak S; Roberts BW Resuscitation; 2017 Jan; 110():154-161. PubMed ID: 27666168 [TBL] [Abstract][Full Text] [Related]
2. Mechanical versus manual chest compressions for cardiac arrest. Wang PL; Brooks SC Cochrane Database Syst Rev; 2018 Aug; 8(8):CD007260. PubMed ID: 30125048 [TBL] [Abstract][Full Text] [Related]
3. Minimal interruption of cardiopulmonary resuscitation for a single shock as mandated by automated external defibrillations does not compromise outcomes in a porcine model of cardiac arrest and resuscitation. Ristagno G; Tang W; Russell JK; Jorgenson D; Wang H; Sun S; Weil MH Crit Care Med; 2008 Nov; 36(11):3048-53. PubMed ID: 18824916 [TBL] [Abstract][Full Text] [Related]
4. Feasibility of Biosignal-guided Chest Compression During Cardiopulmonary Resuscitation: A Proof of Concept. Sundermann ML; Salcido DD; Koller AC; Menegazzi JJ Acad Emerg Med; 2016 Jan; 23(1):93-7. PubMed ID: 26720293 [TBL] [Abstract][Full Text] [Related]
6. Improved neurological outcome with continuous chest compressions compared with 30:2 compressions-to-ventilations cardiopulmonary resuscitation in a realistic swine model of out-of-hospital cardiac arrest. Ewy GA; Zuercher M; Hilwig RW; Sanders AB; Berg RA; Otto CW; Hayes MM; Kern KB Circulation; 2007 Nov; 116(22):2525-30. PubMed ID: 17998457 [TBL] [Abstract][Full Text] [Related]
7. Mechanical chest compressions improve rate of return of spontaneous circulation and allow for initiation of percutaneous circulatory support during cardiac arrest in the cardiac catheterization laboratory. Venturini JM; Retzer E; Estrada JR; Friant J; Beiser D; Edelson D; Paul J; Blair J; Nathan S; Shah AP Resuscitation; 2017 Jun; 115():56-60. PubMed ID: 28377296 [TBL] [Abstract][Full Text] [Related]
8. 2017 American Heart Association Focused Update on Pediatric Basic Life Support and Cardiopulmonary Resuscitation Quality: An Update to the American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Atkins DL; de Caen AR; Berger S; Samson RA; Schexnayder SM; Joyner BL; Bigham BL; Niles DE; Duff JP; Hunt EA; Meaney PA Circulation; 2018 Jan; 137(1):e1-e6. PubMed ID: 29114009 [TBL] [Abstract][Full Text] [Related]
9. Initial defibrillation versus initial chest compression in a 4-minute ventricular fibrillation canine model of cardiac arrest. Wang YL; Zhong JQ; Tao W; Hou XM; Meng XL; Zhang Y Crit Care Med; 2009 Jul; 37(7):2250-2. PubMed ID: 19455026 [TBL] [Abstract][Full Text] [Related]
10. 3:1 compression to ventilation ratio versus continuous chest compression with asynchronous ventilation in a porcine model of neonatal resuscitation. Schmölzer GM; O'Reilly M; Labossiere J; Lee TF; Cowan S; Nicoll J; Bigam DL; Cheung PY Resuscitation; 2014 Feb; 85(2):270-5. PubMed ID: 24161768 [TBL] [Abstract][Full Text] [Related]
11. [Profile and outcome of cardiopulmonary resuscitation after sudden cardiac arrests in the emergency department: a multicenter prospective observational study]. Hu Y; Xu J; Zhu H; Zhang G; Sun F; Zhang Y; Yu X Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2018 Mar; 30(3):234-239. PubMed ID: 29519282 [TBL] [Abstract][Full Text] [Related]
12. Influence of Chest Compressions on Circulation during the Peri-Cardiac Arrest Period in Porcine Models. Xu J; Li C; Li Y; Walline J; Zheng L; Fu Y; Yao D; Zhu H; Liu X; Chai Y; Wang Z; Yu X PLoS One; 2016; 11(5):e0155212. PubMed ID: 27168071 [TBL] [Abstract][Full Text] [Related]
13. Quality of chest compressions during 10min of single-rescuer basic life support with different compression: ventilation ratios in a manikin model. Bjørshol CA; Søreide E; Torsteinbø TH; Lexow K; Nilsen OB; Sunde K Resuscitation; 2008 Apr; 77(1):95-100. PubMed ID: 18207627 [TBL] [Abstract][Full Text] [Related]
14. Improved patient survival using a modified resuscitation protocol for out-of-hospital cardiac arrest. Garza AG; Gratton MC; Salomone JA; Lindholm D; McElroy J; Archer R Circulation; 2009 May; 119(19):2597-605. PubMed ID: 19414637 [TBL] [Abstract][Full Text] [Related]
15. A comparison of 2 types of chest compressions in a porcine model of cardiac arrest. Wu JY; Li CS; Liu ZX; Wu CJ; Zhang GC Am J Emerg Med; 2009 Sep; 27(7):823-9. PubMed ID: 19683111 [TBL] [Abstract][Full Text] [Related]
16. Chest compression rates during cardiopulmonary resuscitation are suboptimal: a prospective study during in-hospital cardiac arrest. Abella BS; Sandbo N; Vassilatos P; Alvarado JP; O'Hearn N; Wigder HN; Hoffman P; Tynus K; Vanden Hoek TL; Becker LB Circulation; 2005 Feb; 111(4):428-34. PubMed ID: 15687130 [TBL] [Abstract][Full Text] [Related]
17. Improved survival outcome with continuous chest compressions with ventilation compared to 5:1 compressions-to-ventilations mechanical cardiopulmonary resuscitation in out-of-hospital cardiac arrest. Lee IH; How CK; Lu WH; Tzeng YM; Chen YJ; Chern CH; Kao WF; Yen DH; Huang MS J Chin Med Assoc; 2013 Mar; 76(3):158-63. PubMed ID: 23497969 [TBL] [Abstract][Full Text] [Related]
18. Simulation exercise to improve retention of cardiopulmonary resuscitation priorities for in-hospital cardiac arrests: A randomized controlled trial. Sullivan NJ; Duval-Arnould J; Twilley M; Smith SP; Aksamit D; Boone-Guercio P; Jeffries PR; Hunt EA Resuscitation; 2015 Jan; 86():6-13. PubMed ID: 25447038 [TBL] [Abstract][Full Text] [Related]