BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 27666415)

  • 1. Remote Optically Controlled Modulation of Catalytic Properties of Nanoparticles through Reconfiguration of the Inorganic/Organic Interface.
    Lawrence RL; Scola B; Li Y; Lim CK; Liu Y; Prasad PN; Swihart MT; Knecht MR
    ACS Nano; 2016 Oct; 10(10):9470-9477. PubMed ID: 27666415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical Control of Nanoparticle Catalysis Influenced by Photoswitch Positioning in Hybrid Peptide Capping Ligands.
    Lawrence RL; Hughes ZE; Cendan VJ; Liu Y; Lim CK; Prasad PN; Swihart MT; Walsh TR; Knecht MR
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33640-33651. PubMed ID: 30185023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical Actuation of Inorganic/Organic Interfaces: Comparing Peptide-Azobenzene Ligand Reconfiguration on Gold and Silver Nanoparticles.
    Palafox-Hernandez JP; Lim CK; Tang Z; Drew KL; Hughes ZE; Li Y; Swihart MT; Prasad PN; Knecht MR; Walsh TR
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):1050-60. PubMed ID: 26684587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomically Resolved Characterization of Optically Driven Ligand Reconfiguration on Nanoparticle Catalyst Surfaces.
    Olagunju MO; Liu Y; Frenkel AI; Knecht MR
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44302-44311. PubMed ID: 34499467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triggering nanoparticle surface ligand rearrangement via external stimuli: light-based actuation of biointerfaces.
    Tang Z; Lim CK; Palafox-Hernandez JP; Drew KL; Li Y; Swihart MT; Prasad PN; Walsh TR; Knecht MR
    Nanoscale; 2015 Aug; 7(32):13638-45. PubMed ID: 26205625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence-Dependent Structure/Function Relationships of Catalytic Peptide-Enabled Gold Nanoparticles Generated under Ambient Synthetic Conditions.
    Bedford NM; Hughes ZE; Tang Z; Li Y; Briggs BD; Ren Y; Swihart MT; Petkov VG; Naik RR; Knecht MR; Walsh TR
    J Am Chem Soc; 2016 Jan; 138(2):540-8. PubMed ID: 26679562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptide/Nanoparticle Biointerfaces for Multistep Tandem Catalysis.
    Perdomo Y; Slocik JM; Phillips DM; Knecht MR
    J Am Chem Soc; 2023 Aug; 145(30):16650-16657. PubMed ID: 37478168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supramolecular Control of Azobenzene Switching on Nanoparticles.
    Chu Z; Han Y; Bian T; De S; Král P; Klajn R
    J Am Chem Soc; 2019 Feb; 141(5):1949-1960. PubMed ID: 30595017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. α-Helical Peptide-Gold Nanoparticle Hybrids: Synthesis, Characterization, and Catalytic Activity.
    Tomizaki KY; Yamaguchi Y; Tsukamoto N; Imai T
    Protein Pept Lett; 2018; 25(1):56-63. PubMed ID: 29237364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst.
    Chang YC; Chen DH
    J Hazard Mater; 2009 Jun; 165(1-3):664-9. PubMed ID: 19022566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties.
    Linic S; Christopher P; Xin H; Marimuthu A
    Acc Chem Res; 2013 Aug; 46(8):1890-9. PubMed ID: 23750539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptide-mediated synthesis of gold nanoparticles: effects of peptide sequence and nature of binding on physicochemical properties.
    Li Y; Tang Z; Prasad PN; Knecht MR; Swihart MT
    Nanoscale; 2014 Mar; 6(6):3165-72. PubMed ID: 24496609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible light-controlled conductance switching of azobenzene-based metal/polymer nanocomposites.
    Pakula C; Zaporojtchenko V; Strunskus T; Zargarani D; Herges R; Faupel F
    Nanotechnology; 2010 Nov; 21(46):465201. PubMed ID: 20972322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the catalytic activity and heterogeneity of Au-nanoparticles at the single-molecule level.
    Xu W; Kong JS; Chen P
    Phys Chem Chem Phys; 2009 Apr; 11(15):2767-78. PubMed ID: 19421535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptide Binding for Bio-Based Nanomaterials.
    Bedford NM; Munro CJ; Knecht MR
    Methods Enzymol; 2016; 580():581-98. PubMed ID: 27586350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reductant and sequence effects on the morphology and catalytic activity of peptide-capped Au nanoparticles.
    Briggs BD; Li Y; Swihart MT; Knecht MR
    ACS Appl Mater Interfaces; 2015 Apr; 7(16):8843-51. PubMed ID: 25839335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isomerization reactions on single adsorbed molecules.
    Morgenstern K
    Acc Chem Res; 2009 Feb; 42(2):213-23. PubMed ID: 19138111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity.
    Campbell CT
    Acc Chem Res; 2013 Aug; 46(8):1712-9. PubMed ID: 23607711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supported Dendrimer-Encapsulated Metal Clusters: Toward Heterogenizing Homogeneous Catalysts.
    Ye R; Zhukhovitskiy AV; Deraedt CV; Toste FD; Somorjai GA
    Acc Chem Res; 2017 Aug; 50(8):1894-1901. PubMed ID: 28704031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Ligand Shell as an Energy Barrier in Surface Reactions on Transition Metal Nanoparticles.
    Smith JG; Jain PK
    J Am Chem Soc; 2016 Jun; 138(21):6765-73. PubMed ID: 27152595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.