These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 27666730)

  • 1. Bioelectrochemical Power-to-Gas: State of the Art and Future Perspectives.
    Geppert F; Liu D; van Eerten-Jansen M; Weidner E; Buisman C; Ter Heijne A
    Trends Biotechnol; 2016 Nov; 34(11):879-894. PubMed ID: 27666730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial community analysis of a methane-producing biocathode in a bioelectrochemical system.
    Van Eerten-Jansen MC; Veldhoen AB; Plugge CM; Stams AJ; Buisman CJ; Ter Heijne A
    Archaea; 2013; 2013():481784. PubMed ID: 24187516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of gas and carbon transport in a methanogenic bioelectrochemical system (BES).
    Dykstra CM; Pavlostathis SG
    Biotechnol Bioeng; 2017 May; 114(5):961-969. PubMed ID: 27922181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methane production in microbial reverse-electrodialysis methanogenesis cells (MRMCs) using thermolytic solutions.
    Luo X; Zhang F; Liu J; Zhang X; Huang X; Logan BE
    Environ Sci Technol; 2014; 48(15):8911-8. PubMed ID: 25010133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Greenhouse gas emissions from rice microcosms amended with a plant microbial fuel cell.
    Arends JB; Speeckaert J; Blondeel E; De Vrieze J; Boeckx P; Verstraete W; Rabaey K; Boon N
    Appl Microbiol Biotechnol; 2014 Apr; 98(7):3205-17. PubMed ID: 24201892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competition between Methanogens and Acetogens in Biocathodes: A Comparison between Potentiostatic and Galvanostatic Control.
    Molenaar SD; Saha P; Mol AR; Sleutels TH; Ter Heijne A; Buisman CJ
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28106846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methanogenic communities on the electrodes of bioelectrochemical reactors without membranes.
    Sasaki K; Morita M; Sasaki D; Hirano S; Matsumoto N; Ohmura N; Igarashi Y
    J Biosci Bioeng; 2011 Jan; 111(1):47-9. PubMed ID: 20840887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel methanogenic rotatable bioelectrochemical system operated with polarity inversion.
    Cheng KY; Ho G; Cord-Ruwisch R
    Environ Sci Technol; 2011 Jan; 45(2):796-802. PubMed ID: 21142093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioelectrochemical enhancement of methane production in low temperature anaerobic digestion at 10 °C.
    Liu D; Zhang L; Chen S; Buisman C; Ter Heijne A
    Water Res; 2016 Aug; 99():281-287. PubMed ID: 27117912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature dependence of bioelectrochemical CO
    Yang HY; Bao BL; Liu J; Qin Y; Wang YR; Su KZ; Han JC; Mu Y
    Bioelectrochemistry; 2018 Feb; 119():180-188. PubMed ID: 29054074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioelectrochemical system accelerates microbial growth and degradation of filter paper.
    Sasaki K; Hirano S; Morita M; Sasaki D; Matsumoto N; Ohmura N; Igarashi Y
    Appl Microbiol Biotechnol; 2011 Jan; 89(2):449-55. PubMed ID: 21104243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct biological conversion of electrical current into methane by electromethanogenesis.
    Cheng S; Xing D; Call DF; Logan BE
    Environ Sci Technol; 2009 May; 43(10):3953-8. PubMed ID: 19544913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioconversion of carbon dioxide to methane using hydrogen and hydrogenotrophic methanogens.
    Zabranska J; Pokorna D
    Biotechnol Adv; 2018; 36(3):707-720. PubMed ID: 29248685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The membraneless bioelectrochemical reactor stimulates hydrogen fermentation by inhibiting methanogenic archaea.
    Sasaki K; Morita M; Sasaki D; Ohmura N; Igarashi Y
    Appl Microbiol Biotechnol; 2013 Aug; 97(15):7005-13. PubMed ID: 23053110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding methane bioelectrosynthesis from carbon dioxide in a two-chamber microbial electrolysis cells (MECs) containing a carbon biocathode.
    Zhen G; Kobayashi T; Lu X; Xu K
    Bioresour Technol; 2015 Jun; 186():141-148. PubMed ID: 25812818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective Enrichment Establishes a Stable Performing Community for Microbial Electrosynthesis of Acetate from CO₂.
    Patil SA; Arends JB; Vanwonterghem I; van Meerbergen J; Guo K; Tyson GW; Rabaey K
    Environ Sci Technol; 2015 Jul; 49(14):8833-43. PubMed ID: 26079858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relevance of extracellular electron uptake mechanisms for electromethanogenesis applications.
    Palacios PA; Philips J; Bentien A; Kofoed MVW
    Biotechnol Adv; 2024; 73():108369. PubMed ID: 38685440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioelectrohydrogenesis and inhibition of methanogenic activity in microbial electrolysis cells - A review.
    Karthikeyan R; Cheng KY; Selvam A; Bose A; Wong JWC
    Biotechnol Adv; 2017 Nov; 35(6):758-771. PubMed ID: 28709875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective microbial electrosynthesis of methane by a pure culture of a marine lithoautotrophic archaeon.
    Beese-Vasbender PF; Grote JP; Garrelfs J; Stratmann M; Mayrhofer KJ
    Bioelectrochemistry; 2015 Apr; 102():50-5. PubMed ID: 25486337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.