These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 27666988)

  • 21. Production of lovastatin by wild strains of Aspergillus terreus.
    Patil RH; Krishnan P; Maheshwari VL
    Nat Prod Commun; 2011 Feb; 6(2):183-6. PubMed ID: 21425670
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Feasibility study of on-site solid-state enzyme production by
    Shinkawa S; Mitsuzawa S
    Biotechnol Biofuels; 2020; 13():31. PubMed ID: 32127918
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Penicillium subrubescens is a promising alternative for Aspergillus niger in enzymatic plant biomass saccharification.
    Mäkelä MR; Mansouri S; Wiebenga A; Rytioja J; de Vries RP; Hildén KS
    N Biotechnol; 2016 Dec; 33(6):834-841. PubMed ID: 27469436
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simultaneous saccharification and fermentation and partial saccharification and co-fermentation of lignocellulosic biomass for ethanol production.
    Doran-Peterson J; Jangid A; Brandon SK; DeCrescenzo-Henriksen E; Dien B; Ingram LO
    Methods Mol Biol; 2009; 581():263-80. PubMed ID: 19768628
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Production of various organic acids from different renewable sources by immobilized cells in the regimes of separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SFF).
    Maslova O; Stepanov N; Senko O; Efremenko E
    Bioresour Technol; 2019 Jan; 272():1-9. PubMed ID: 30292911
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of L-carnitine-enriched edible filamentous fungal biomass through submerged cultivation.
    Rousta N; Ferreira JA; Taherzadeh MJ
    Bioengineered; 2021 Dec; 12(1):358-368. PubMed ID: 33323030
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomass-Derived Production of Itaconic Acid as a Building Block in Specialty Polymers.
    Teleky BE; Vodnar DC
    Polymers (Basel); 2019 Jun; 11(6):. PubMed ID: 31212656
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Manganese Deficiency Is Required for High Itaconic Acid Production From D-Xylose in
    Kolláth IS; Molnár ÁP; Soós Á; Fekete E; Sándor E; Kovács B; Kubicek CP; Karaffa L
    Front Microbiol; 2019; 10():1589. PubMed ID: 31338087
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis of itaconic acid from agricultural waste using novel
    Gnanasekaran R; Dhandapani B; Gopinath KP; Iyyappan J
    Prep Biochem Biotechnol; 2018; 48(7):605-609. PubMed ID: 29889619
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relationship between morphology and itaconic acid production by Aspergillus terreus.
    Gao Q; Liu J; Liu L
    J Microbiol Biotechnol; 2014 Feb; 24(2):168-76. PubMed ID: 24169454
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct microbial conversion of wheat straw into lipid by a cellulolytic fungus of Aspergillus oryzae A-4 in solid-state fermentation.
    Lin H; Cheng W; Ding HT; Chen XJ; Zhou QF; Zhao YH
    Bioresour Technol; 2010 Oct; 101(19):7556-62. PubMed ID: 20444596
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Emerging biotechnologies for production of itaconic acid and its applications as a platform chemical.
    Saha BC
    J Ind Microbiol Biotechnol; 2017 Feb; 44(2):303-315. PubMed ID: 27933436
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Waste biorefineries using filamentous ascomycetes fungi: Present status and future prospects.
    Ferreira JA; Mahboubi A; Lennartsson PR; Taherzadeh MJ
    Bioresour Technol; 2016 Sep; 215():334-345. PubMed ID: 26996263
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulating Pyruvate Carboxylase in the Living Culture of Aspergillus Terreus Nrrl 1960 by L-Aspartate for Enhanced Itaconic Acid Production.
    Songserm P; Thitiprasert S; Tolieng V; Piluk J; Tanasupawat S; Assabumrungrat S; Yang ST; Karnchanatat A; Thongchul N
    Appl Biochem Biotechnol; 2015 Oct; 177(3):595-609. PubMed ID: 26208692
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomass pretreatment affects Ustilago maydis in producing itaconic acid.
    Klement T; Milker S; Jäger G; Grande PM; Domínguez de María P; Büchs J
    Microb Cell Fact; 2012 Apr; 11():43. PubMed ID: 22480369
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simultaneous saccharification and fermentation of delignified lignocellulosic biomass at high solid loadings by a newly isolated thermotolerant Kluyveromyces sp. for ethanol production.
    Narra M; James JP; Balasubramanian V
    Bioresour Technol; 2015 Mar; 179():331-338. PubMed ID: 25553563
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative performance of commercial and laboratory enzymatic complexes from submerged or solid-state fermentation in lignocellulosic biomass hydrolysis.
    Prévot V; Lopez M; Copinet E; Duchiron F
    Bioresour Technol; 2013 Feb; 129():690-3. PubMed ID: 23352484
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct lactic acid fermentation: focus on simultaneous saccharification and lactic acid production.
    John RP; G S A; Nampoothiri KM; Pandey A
    Biotechnol Adv; 2009; 27(2):145-52. PubMed ID: 19013227
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coproduction of Enzymes and Beta-Glucan by
    Ji SB; Ra CH
    J Microbiol Biotechnol; 2021 Jul; 31(7):1028-1034. PubMed ID: 34099602
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Production of lactic acid and fungal biomass by Rhizopus fungi from food processing waste streams.
    Jin B; Yin P; Ma Y; Zhao L
    J Ind Microbiol Biotechnol; 2005 Dec; 32(11-12):678-86. PubMed ID: 16208461
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.