These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 27666990)
1. Characterization of Polyester Cloth as an Alternative Separator to Nafion Membrane in Microbial Fuel Cells for Bioelectricity Generation Using Swine Wastewater. Kim T; Kang S; Sung JH; Kang YK; Kim YH; Jang JK J Microbiol Biotechnol; 2016 Dec; 26(12):2171-2178. PubMed ID: 27666990 [TBL] [Abstract][Full Text] [Related]
2. Investigating effect of proton-exchange membrane on new air-cathode single-chamber microbial fuel cell configuration for bioenergy recovery from Azorubine dye degradation. Kardi SN; Ibrahim N; Rashid NAA; Darzi GN Environ Sci Pollut Res Int; 2019 Jul; 26(21):21201-21215. PubMed ID: 31115820 [TBL] [Abstract][Full Text] [Related]
3. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Kim JR; Cheng S; Oh SE; Logan BE Environ Sci Technol; 2007 Feb; 41(3):1004-9. PubMed ID: 17328216 [TBL] [Abstract][Full Text] [Related]
4. Performance and microbial ecology of air-cathode microbial fuel cells with layered electrode assemblies. Butler CS; Nerenberg R Appl Microbiol Biotechnol; 2010 May; 86(5):1399-408. PubMed ID: 20098985 [TBL] [Abstract][Full Text] [Related]
5. Characterization of the COD removal, electricity generation, and bacterial communities in microbial fuel cells treating molasses wastewater. Lee YY; Kim TG; Cho KS J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Nov; 51(13):1131-8. PubMed ID: 27428492 [TBL] [Abstract][Full Text] [Related]
6. Comparison of electrochemical and microbiological characterization of microbial fuel cells equipped with SPEEK and Nafion membrane electrode assemblies. Suzuki K; Owen R; Mok J; Mochihara H; Hosokawa T; Kubota H; Sakamoto H; Matsuda A; Tashiro Y; Futamata H J Biosci Bioeng; 2016 Sep; 122(3):322-8. PubMed ID: 27215833 [TBL] [Abstract][Full Text] [Related]
7. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Liu H; Logan BE Environ Sci Technol; 2004 Jul; 38(14):4040-6. PubMed ID: 15298217 [TBL] [Abstract][Full Text] [Related]
8. Strategic development and performance evaluation of functionalized tea waste ash-clay composite as low-cost, high-performance separator in microbial fuel cell. Vempaty A; Mathuriya AS Environ Technol; 2023 Aug; 44(18):2713-2724. PubMed ID: 35138220 [TBL] [Abstract][Full Text] [Related]
9. Power generation using adjustable Nafion/PTFE mixed binders in air-cathode microbial fuel cells. Wang X; Feng Y; Liu J; Shi X; Lee H; Li N; Ren N Biosens Bioelectron; 2010 Oct; 26(2):946-8. PubMed ID: 20634052 [TBL] [Abstract][Full Text] [Related]
10. Development of MFC using sulphonated polyether ether ketone (SPEEK) membrane for electricity generation from waste water. Ayyaru S; Dharmalingam S Bioresour Technol; 2011 Dec; 102(24):11167-71. PubMed ID: 22000968 [TBL] [Abstract][Full Text] [Related]
11. Effects of proton exchange membrane on the performance and microbial community composition of air-cathode microbial fuel cells. Lee YY; Kim TG; Cho KS J Biotechnol; 2015 Oct; 211():130-7. PubMed ID: 26235818 [TBL] [Abstract][Full Text] [Related]
12. Effect of separator and inoculum type on electricity generation and microbial community in single-chamber microbial fuel cells. Yu J; Park Y; Lee T Bioprocess Biosyst Eng; 2014 Apr; 37(4):667-75. PubMed ID: 24009019 [TBL] [Abstract][Full Text] [Related]
13. Application of clayware ceramic separator modified with silica in microbial fuel cell for bioelectricity generation during rice mill wastewater treatment. Raychaudhuri A; Sahoo RN; Behera M Water Sci Technol; 2021 Jul; 84(1):66-76. PubMed ID: 34280155 [TBL] [Abstract][Full Text] [Related]
14. Separator characteristics for increasing performance of microbial fuel cells. Zhang X; Cheng S; Wang X; Huang X; Logan BE Environ Sci Technol; 2009 Nov; 43(21):8456-61. PubMed ID: 19924984 [TBL] [Abstract][Full Text] [Related]
15. Bioelectricity production from microbial fuel cell using mixed bacterial culture isolated from distillery wastewater. Samsudeen N; Radhakrishnan TK; Matheswaran M Bioresour Technol; 2015 Nov; 195():242-7. PubMed ID: 26212679 [TBL] [Abstract][Full Text] [Related]
16. Proton exchange membrane based on graphene oxide/polysulfone hybrid nano-composite for simultaneous generation of electricity and wastewater treatment. Ali AKM; Ali MEA; Younes AA; Abo El Fadl MM; Farag AB J Hazard Mater; 2021 Oct; 419():126420. PubMed ID: 34166952 [TBL] [Abstract][Full Text] [Related]
17. Performance evaluation of microbial electrochemical systems operated with Nafion and supported ionic liquid membranes. Koók L; Nemestóthy N; Bakonyi P; Zhen G; Kumar G; Lu X; Su L; Saratale GD; Kim SH; Gubicza L Chemosphere; 2017 May; 175():350-355. PubMed ID: 28235744 [TBL] [Abstract][Full Text] [Related]
19. Behavior of two-chamber microbial electrochemical systems started-up with different ion-exchange membrane separators. Koók L; Quéméner ED; Bakonyi P; Zitka J; Trably E; Tóth G; Pavlovec L; Pientka Z; Bernet N; Bélafi-Bakó K; Nemestóthy N Bioresour Technol; 2019 Apr; 278():279-286. PubMed ID: 30708331 [TBL] [Abstract][Full Text] [Related]
20. Efficacy of electrode position in microbial fuel cell for simultaneous Cr(VI) reduction and bioelectricity production. Zhou J; Li M; Zhou W; Hu J; Long Y; Tsang YF; Zhou S Sci Total Environ; 2020 Dec; 748():141425. PubMed ID: 32798878 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]