These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 27667262)

  • 1. Controllably releasing long-lived quantum memory for photonic polarization qubit into multiple spatially-separate photonic channels.
    Chen L; Xu Z; Zeng W; Wen Y; Li S; Wang H
    Sci Rep; 2016 Sep; 6():33959. PubMed ID: 27667262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble.
    Vernaz-Gris P; Huang K; Cao M; Sheremet AS; Laurat J
    Nat Commun; 2018 Jan; 9(1):363. PubMed ID: 29371593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum storage of a photonic polarization qubit in a solid.
    Gündoğan M; Ledingham PM; Almasi A; Cristiani M; de Riedmatten H
    Phys Rev Lett; 2012 May; 108(19):190504. PubMed ID: 23003015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy.
    Xu Z; Wu Y; Tian L; Chen L; Zhang Z; Yan Z; Li S; Wang H; Xie C; Peng K
    Phys Rev Lett; 2013 Dec; 111(24):240503. PubMed ID: 24483636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coherent and dynamic beam splitting based on light storage in cold atoms.
    Park KK; Zhao TM; Lee JC; Chough YT; Kim YH
    Sci Rep; 2016 Sep; 6():34279. PubMed ID: 27677457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protecting a quantum memory for a photonic polarization qubit in a cold atomic ensemble by dynamical decoupling.
    Wu Y; Chen L; Xu Z; Wang H
    Opt Express; 2014 Sep; 22(19):23360-71. PubMed ID: 25321805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic vapor quantum memory for a photonic polarization qubit.
    Cho YW; Kim YH
    Opt Express; 2010 Dec; 18(25):25786-93. PubMed ID: 21164923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid quantum logic and a test of Bell's inequality using two different atomic isotopes.
    Ballance CJ; Schäfer VM; Home JP; Szwer DJ; Webster SC; Allcock DT; Linke NM; Harty TP; Aude Craik DP; Stacey DN; Steane AM; Lucas DM
    Nature; 2015 Dec; 528(7582):384-6. PubMed ID: 26672554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-Demand Quantum Storage of Photonic Qubits in an On-Chip Waveguide.
    Liu C; Zhu TX; Su MX; Ma YZ; Zhou ZQ; Li CF; Guo GC
    Phys Rev Lett; 2020 Dec; 125(26):260504. PubMed ID: 33449731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Telecom-Wavelength Atomic Quantum Memory in Optical Fiber for Heralded Polarization Qubits.
    Jin J; Saglamyurek E; Puigibert Ml; Verma V; Marsili F; Nam SW; Oblak D; Tittel W
    Phys Rev Lett; 2015 Oct; 115(14):140501. PubMed ID: 26551798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Room-temperature single-photon level memory for polarization states.
    Kupchak C; Mittiga T; Jordaan B; Namazi M; Nölleke C; Figueroa E
    Sci Rep; 2015 Jan; 5():7658. PubMed ID: 25564048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High purity single photons entangled with an atomic qubit.
    Crocker C; Lichtman M; Sosnova K; Carter A; Scarano S; Monroe C
    Opt Express; 2019 Sep; 27(20):28143-28149. PubMed ID: 31684572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum storage of heralded polarization qubits in birefringent and anisotropically absorbing materials.
    Clausen C; Bussières F; Afzelius M; Gisin N
    Phys Rev Lett; 2012 May; 108(19):190503. PubMed ID: 23003014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bright nanoscale source of deterministic entangled photon pairs violating Bell's inequality.
    Jöns KD; Schweickert L; Versteegh MAM; Dalacu D; Poole PJ; Gulinatti A; Giudice A; Zwiller V; Reimer ME
    Sci Rep; 2017 May; 7(1):1700. PubMed ID: 28490728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Holographic storage of biphoton entanglement.
    Dai HN; Zhang H; Yang SJ; Zhao TM; Rui J; Deng YJ; Li L; Liu NL; Chen S; Bao XH; Jin XM; Zhao B; Pan JW
    Phys Rev Lett; 2012 May; 108(21):210501. PubMed ID: 23003228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum teleportation from a propagating photon to a solid-state spin qubit.
    Gao WB; Fallahi P; Togan E; Delteil A; Chin YS; Miguel-Sanchez J; Imamoğlu A
    Nat Commun; 2013; 4():2744. PubMed ID: 24177228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Realization of reliable solid-state quantum memory for photonic polarization qubit.
    Zhou ZQ; Lin WB; Yang M; Li CF; Guo GC
    Phys Rev Lett; 2012 May; 108(19):190505. PubMed ID: 23003016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid State Spin-Wave Quantum Memory for Time-Bin Qubits.
    Gündoğan M; Ledingham PM; Kutluer K; Mazzera M; de Riedmatten H
    Phys Rev Lett; 2015 Jun; 114(23):230501. PubMed ID: 26196784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coherent optical memory with high storage efficiency and large fractional delay.
    Chen YH; Lee MJ; Wang IC; Du S; Chen YF; Chen YC; Yu IA
    Phys Rev Lett; 2013 Feb; 110(8):083601. PubMed ID: 23473142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A single-atom quantum memory.
    Specht HP; Nölleke C; Reiserer A; Uphoff M; Figueroa E; Ritter S; Rempe G
    Nature; 2011 May; 473(7346):190-3. PubMed ID: 21532588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.