These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 27667481)

  • 1. Investigating the Molecular Mechanisms Behind Uncharacterized Cysteine Losses from Prediction of Their Oxidation State.
    Raimondi D; Orlando G; Messens J; Vranken WF
    Hum Mutat; 2017 Jan; 38(1):86-94. PubMed ID: 27667481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Evolutionary View on Disulfide Bond Connectivities Prediction Using Phylogenetic Trees and a Simple Cysteine Mutation Model.
    Raimondi D; Orlando G; Vranken WF
    PLoS One; 2015; 10(7):e0131792. PubMed ID: 26161671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting disulfide bond connectivity in proteins by correlated mutations analysis.
    Rubinstein R; Fiser A
    Bioinformatics; 2008 Feb; 24(4):498-504. PubMed ID: 18203772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring synonymous codon usage preferences of disulfide-bonded and non-disulfide bonded cysteines in the E. coli genome.
    Song J; Wang M; Burrage K
    J Theor Biol; 2006 Jul; 241(2):390-401. PubMed ID: 16427089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Cysteine Redox Post-Translational Modifications in Cell Biology and Drug Pharmacology.
    Wani R; Murray BW
    Methods Mol Biol; 2017; 1558():191-212. PubMed ID: 28150239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of In Silico Tools for the Evaluation of UGT1A1 Missense Variants.
    Rodrigues C; Santos-Silva A; Costa E; Bronze-da-Rocha E
    Hum Mutat; 2015 Dec; 36(12):1215-25. PubMed ID: 26377032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the state of cysteines based on sequence information.
    Guang X; Guo Y; Xiao J; Wang X; Sun J; Xiong W; Li M
    J Theor Biol; 2010 Dec; 267(3):312-8. PubMed ID: 20826168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of the disulfide-bonding state of cysteines in proteins based on dipeptide composition.
    Song JN; Wang ML; Li WJ; Xu WB
    Biochem Biophys Res Commun; 2004 May; 318(1):142-7. PubMed ID: 15110765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving disulfide connectivity prediction with sequential distance between oxidized cysteines.
    Tsai CH; Chen BJ; Chan CH; Liu HL; Kao CY
    Bioinformatics; 2005 Dec; 21(24):4416-9. PubMed ID: 16223789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SOHPRED: a new bioinformatics tool for the characterization and prediction of human S-sulfenylation sites.
    Wang X; Yan R; Li J; Song J
    Mol Biosyst; 2016 Aug; 12(9):2849-58. PubMed ID: 27364688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MSLVP: prediction of multiple subcellular localization of viral proteins using a support vector machine.
    Thakur A; Rajput A; Kumar M
    Mol Biosyst; 2016 Jul; 12(8):2572-86. PubMed ID: 27272007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classification of Amino Acid Substitutions in Mismatch Repair Proteins Using PON-MMR2.
    Niroula A; Vihinen M
    Hum Mutat; 2015 Dec; 36(12):1128-34. PubMed ID: 26333163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clustering-based model of cysteine co-evolution improves disulfide bond connectivity prediction and reduces homologous sequence requirements.
    Raimondi D; Orlando G; Vranken WF
    Bioinformatics; 2015 Apr; 31(8):1219-25. PubMed ID: 25492406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cooperativity of the oxidization of cysteines in globular proteins.
    Jiang-Ning S; Wei-Jiang L; Wen-Bo X
    J Theor Biol; 2004 Nov; 231(1):85-95. PubMed ID: 15363931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pred-MutHTP: Prediction of disease-causing and neutral mutations in human transmembrane proteins.
    Kulandaisamy A; Zaucha J; Sakthivel R; Frishman D; Michael Gromiha M
    Hum Mutat; 2020 Mar; 41(3):581-590. PubMed ID: 31821684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of disulfide bonds in human nucleoside triphosphate diphosphohydrolase 3 (NTPDase3): implications for NTPDase structural modeling.
    Ivanenkov VV; Meller J; Kirley TL
    Biochemistry; 2005 Jun; 44(25):8998-9012. PubMed ID: 15966724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico searching for disease-associated functional DNA variants.
    Sethumadhavan R; Doss CG; Rajasekaran R
    Methods Mol Biol; 2011; 760():239-50. PubMed ID: 21780001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Broad Overview of Computational Methods for Predicting the Pathophysiological Effects of Non-synonymous Variants.
    Castellana S; Fusilli C; Mazza T
    Methods Mol Biol; 2016; 1415():423-40. PubMed ID: 27115646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disulfide transfer between two conserved cysteine pairs imparts selectivity to protein oxidation by Ero1.
    Sevier CS; Kaiser CA
    Mol Biol Cell; 2006 May; 17(5):2256-66. PubMed ID: 16495342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.