These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 27667519)

  • 21. Methods for determining the barrier efficacy of surgical gowns.
    McCullough EA
    Am J Infect Control; 1993 Dec; 21(6):368-74. PubMed ID: 8122812
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Performance study of protective clothing against hot water splashes: from bench scale test to instrumented manikin test.
    Lu Y; Song G; Wang F
    Ann Occup Hyg; 2015 Mar; 59(2):232-42. PubMed ID: 25349371
    [TBL] [Abstract][Full Text] [Related]  

  • 23.
    Schwerin MR; Gordon EA; Wood SC; Lucas AD
    Biomed Instrum Technol; 2019; 53(3):196-201. PubMed ID: 31162954
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficiency of five chemical protective clothing materials against nano and submicron aerosols when submitted to mechanical deformations.
    Ben Salah M; Hallé S; Tuduri L
    J Occup Environ Hyg; 2016; 13(6):425-33. PubMed ID: 26786065
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [The evaluation of bacteria penetration by medical textiles for multiple use and disposable multilayer surgical drapes, according to the PN-EN ISO 22610 standard].
    Zareba T; Zawistowska A; Kruszewska H; Mrówka A; Tyski S
    Med Dosw Mikrobiol; 2012; 64(3):261-70. PubMed ID: 23285781
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Potential Risk of Virus Carryover by Fabrics of Personal Protective Gowns.
    Katoh I; Tanabe F; Kasai H; Moriishi K; Shimasaki N; Shinohara K; Uchida Y; Koshiba T; Arakawa S; Morimoto M
    Front Public Health; 2019; 7():121. PubMed ID: 31179258
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of nano- and submicron particle penetration through ten nonwoven fabrics using a wind-driven approach.
    Gao P; Jaques PA; Hsiao TC; Shepherd A; Eimer BC; Yang M; Miller A; Gupta B; Shaffer R
    J Occup Environ Hyg; 2011 Jan; 8(1):13-22. PubMed ID: 21154104
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of a high-density nonwoven structure to improve the stab resistance of protective clothing material.
    Bao L; Wang Y; Baba T; Fukuda Y; Wakatsuki K; Morikawa H
    Ind Health; 2017 Dec; 55(6):513-520. PubMed ID: 28978816
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of two commercially available chromogenic media for confirmation of methicillin-resistant Staphylococcus aureus from human, animal, and food samples.
    Ariza-Miguel J; Oniciuc EA; Sanz I; Fernández-Natal I; Hernández M; Rodríguez-Lázaro D
    Int J Food Microbiol; 2015 Sep; 209():26-8. PubMed ID: 26026664
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bacterial contamination of health care workers' white coats.
    Treakle AM; Thom KA; Furuno JP; Strauss SM; Harris AD; Perencevich EN
    Am J Infect Control; 2009 Mar; 37(2):101-5. PubMed ID: 18834751
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An empirical analysis of thermal protective performance of fabrics used in protective clothing.
    Mandal S; Song G
    Ann Occup Hyg; 2014 Oct; 58(8):1065-77. PubMed ID: 25135076
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Meticillin-resistant Staphylococcus aureus contamination of healthcare workers' uniforms in long-term care facilities.
    Gaspard P; Eschbach E; Gunther D; Gayet S; Bertrand X; Talon D
    J Hosp Infect; 2009 Feb; 71(2):170-5. PubMed ID: 19100661
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using protective clothing.
    York V
    Nurs Times; 2002 Nov 12-18; 98(46):52. PubMed ID: 12478937
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a permeation panel to test dermal protective clothing against sprayed coatings.
    Ceballos DM; Yost MG; Whittaker SG; Reeb-Whitaker C; Camp J; Dills R
    Ann Occup Hyg; 2011 Mar; 55(2):214-27. PubMed ID: 21177261
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prevalence and genotypic relatedness of methicillin resistant Staphylococcus aureus in a tertiary care hospital.
    Fomda BA; Thokar MA; Bashir G; Khan A; Kour A; Zahoor D; Ray P
    J Postgrad Med; 2014; 60(4):386-9. PubMed ID: 25370547
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Trilayered Composite Fabric with Directional Water Transport and Resistance to Blood Penetration for Medical Protective Clothing.
    Lin Y; Wang C; Miao D; Cheng N; Meng N; Babar AA; Wang X; Ding B; Yu J
    ACS Appl Mater Interfaces; 2022 Apr; 14(16):18944-18953. PubMed ID: 35412798
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Staphylococcus epidermidis--hospital epidemiology and the detection of methicillin resistance.
    Hedin G
    Scand J Infect Dis Suppl; 1993; 90():1-59. PubMed ID: 8303217
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Statistical model of pesticide penetration through woven work clothing fabrics.
    Lee S; Obendorf SK
    Arch Environ Contam Toxicol; 2005 Aug; 49(2):266-73. PubMed ID: 16059749
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transmission of nosocomial pathogens by white coats: an in-vitro model.
    Butler DL; Major Y; Bearman G; Edmond MB
    J Hosp Infect; 2010 Jun; 75(2):137-8. PubMed ID: 20299132
    [No Abstract]   [Full Text] [Related]  

  • 40. Occupational needs and evaluation methods for cold protective clothing.
    Anttonen H
    Arctic Med Res; 1993; 52 Suppl 9():1-76. PubMed ID: 8048995
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.