BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 27667557)

  • 1. Blood-Brain Barrier Changes in High Altitude.
    Lafuente JV; Bermudez G; Camargo-Arce L; Bulnes S
    CNS Neurol Disord Drug Targets; 2016; 15(9):1188-1197. PubMed ID: 27667557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-altitude cerebral edema: its own entity or end-stage acute mountain sickness?
    Turner REF; Gatterer H; Falla M; Lawley JS
    J Appl Physiol (1985); 2021 Jul; 131(1):313-325. PubMed ID: 33856254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High altitude cerebral edema and acute mountain sickness. A pathophysiology update.
    Hackett PH
    Adv Exp Med Biol; 1999; 474():23-45. PubMed ID: 10634991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. What role does the blood brain barrier play in acute mountain sickness?
    Baneke A
    Travel Med Infect Dis; 2010 Jul; 8(4):257-62. PubMed ID: 20952272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cerebral etiology of high-altitude cerebral edema and acute mountain sickness.
    Hackett PH
    Wilderness Environ Med; 1999; 10(2):97-109. PubMed ID: 10442158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NRF1-mediated microglial activation triggers high-altitude cerebral edema.
    Wang X; Chen G; Wan B; Dong Z; Xue Y; Luo Q; Wang D; Lu Y; Zhu L
    J Mol Cell Biol; 2022 Sep; 14(5):. PubMed ID: 35704676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frontiers of hypoxia research: acute mountain sickness.
    Roach RC; Hackett PH
    J Exp Biol; 2001 Sep; 204(Pt 18):3161-70. PubMed ID: 11581330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systemic pro-inflammatory response facilitates the development of cerebral edema during short hypoxia.
    Song TT; Bi YH; Gao YQ; Huang R; Hao K; Xu G; Tang JW; Ma ZQ; Kong FP; Coote JH; Chen XQ; Du JZ
    J Neuroinflammation; 2016 Mar; 13(1):63. PubMed ID: 26968975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method for establishing the high-altitude cerebral edema (HACE) model by acute hypobaric hypoxia in adult mice.
    Huang X; Zhou Y; Zhao T; Han X; Qiao M; Ding X; Li D; Wu L; Wu K; Zhu LL; Fan M
    J Neurosci Methods; 2015 Apr; 245():178-81. PubMed ID: 25701686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free radical-mediated damage to barrier function is not associated with altered brain morphology in high-altitude headache.
    Bailey DM; Roukens R; Knauth M; Kallenberg K; Christ S; Mohr A; Genius J; Storch-Hagenlocher B; Meisel F; McEneny J; Young IS; Steiner T; Hess K; Bärtsch P
    J Cereb Blood Flow Metab; 2006 Jan; 26(1):99-111. PubMed ID: 15959459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of acute hypoxia and hyperthermia on the permeability of the blood-brain barrier in adult rats.
    Natah SS; Srinivasan S; Pittman Q; Zhao Z; Dunn JF
    J Appl Physiol (1985); 2009 Oct; 107(4):1348-56. PubMed ID: 19644026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microhemorrhages in nonfatal high-altitude cerebral edema.
    Kallenberg K; Dehnert C; Dörfler A; Schellinger PD; Bailey DM; Knauth M; Bärtsch PD
    J Cereb Blood Flow Metab; 2008 Sep; 28(9):1635-42. PubMed ID: 18523438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Establishment of an experimental rat model of high altitude cerebral edema by hypobaric hypoxia combined with temperature fluctuation.
    Jing L; Wu N; He L; Shao J; Ma H
    Brain Res Bull; 2020 Dec; 165():253-262. PubMed ID: 33141074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-altitude cerebral edema evaluated with magnetic resonance imaging: clinical correlation and pathophysiology.
    Hackett PH; Yarnell PR; Hill R; Reynard K; Heit J; McCormick J
    JAMA; 1998 Dec; 280(22):1920-5. PubMed ID: 9851477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Update on high altitude cerebral edema including recent work on the eye.
    Willmann G; Gekeler F; Schommer K; Bärtsch P
    High Alt Med Biol; 2014 Jun; 15(2):112-22. PubMed ID: 24971765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic resonance imaging evidence of cytotoxic cerebral edema in acute mountain sickness.
    Kallenberg K; Bailey DM; Christ S; Mohr A; Roukens R; Menold E; Steiner T; Bärtsch P; Knauth M
    J Cereb Blood Flow Metab; 2007 May; 27(5):1064-71. PubMed ID: 17024110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Work at high altitude and oxidative stress: antioxidant nutrients.
    Askew EW
    Toxicology; 2002 Nov; 180(2):107-19. PubMed ID: 12324188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased cerebral output of free radicals during hypoxia: implications for acute mountain sickness?
    Bailey DM; Taudorf S; Berg RM; Lundby C; McEneny J; Young IS; Evans KA; James PE; Shore A; Hullin DA; McCord JM; Pedersen BK; Möller K
    Am J Physiol Regul Integr Comp Physiol; 2009 Nov; 297(5):R1283-92. PubMed ID: 19726713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypoxia augments LPS-induced inflammation and triggers high altitude cerebral edema in mice.
    Zhou Y; Huang X; Zhao T; Qiao M; Zhao X; Zhao M; Xu L; Zhao Y; Wu L; Wu K; Chen R; Fan M; Zhu L
    Brain Behav Immun; 2017 Aug; 64():266-275. PubMed ID: 28433745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preventing High Altitude Cerebral Edema in Rats with Repurposed Anti-Angiogenesis Pharmacotherapy.
    Tarshis S; Maltzahn J; Loomis Z; Irwin DC
    Aerosp Med Hum Perform; 2016 Dec; 87(12):1031-1035. PubMed ID: 28323589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.