BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

489 related articles for article (PubMed ID: 27667570)

  • 21. Early onset of Runx2 expression caused craniosynostosis, ectopic bone formation, and limb defects.
    Maeno T; Moriishi T; Yoshida CA; Komori H; Kanatani N; Izumi S; Takaoka K; Komori T
    Bone; 2011 Oct; 49(4):673-82. PubMed ID: 21807129
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of Runx2 by MicroRNAs in osteoblast differentiation.
    Narayanan A; Srinaath N; Rohini M; Selvamurugan N
    Life Sci; 2019 Sep; 232():116676. PubMed ID: 31340165
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of osteoblast differentiation by Runx2.
    Komori T
    Adv Exp Med Biol; 2010; 658():43-9. PubMed ID: 19950014
    [TBL] [Abstract][Full Text] [Related]  

  • 24. JNK activity is essential for Atf4 expression and late-stage osteoblast differentiation.
    Matsuguchi T; Chiba N; Bandow K; Kakimoto K; Masuda A; Ohnishi T
    J Bone Miner Res; 2009 Mar; 24(3):398-410. PubMed ID: 19016586
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation.
    Nakashima K; Zhou X; Kunkel G; Zhang Z; Deng JM; Behringer RR; de Crombrugghe B
    Cell; 2002 Jan; 108(1):17-29. PubMed ID: 11792318
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ucma, a direct transcriptional target of Runx2 and Osterix, promotes osteoblast differentiation and nodule formation.
    Lee YJ; Park SY; Lee SJ; Boo YC; Choi JY; Kim JE
    Osteoarthritis Cartilage; 2015 Aug; 23(8):1421-31. PubMed ID: 25865393
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cationic Nanogel-mediated Runx2 and Osterix siRNA Delivery Decreases Mineralization in MC3T3 Cells.
    Shrivats AR; Hsu E; Averick S; Klimak M; Watt AC; DeMaio M; Matyjaszewski K; Hollinger JO
    Clin Orthop Relat Res; 2015 Jun; 473(6):2139-49. PubMed ID: 25448327
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcriptional regulation of bone formation by the osteoblast-specific transcription factor Osx.
    Zhang C
    J Orthop Surg Res; 2010 Jun; 5():37. PubMed ID: 20550694
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Signaling pathways regulating the specification and differentiation of the osteoblast lineage.
    Hojo H; Ohba S; Chung UI
    Regen Ther; 2015 Jun; 1():57-62. PubMed ID: 31245441
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of TCF/LEF Transcription Factors in Bone Development and Osteogenesis.
    Li Z; Xu Z; Duan C; Liu W; Sun J; Han B
    Int J Med Sci; 2018; 15(12):1415-1422. PubMed ID: 30275770
    [TBL] [Abstract][Full Text] [Related]  

  • 31. BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop.
    Rawadi G; Vayssière B; Dunn F; Baron R; Roman-Roman S
    J Bone Miner Res; 2003 Oct; 18(10):1842-53. PubMed ID: 14584895
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Maturation of cortical bone suppresses periosteal osteoprogenitor proliferation in a paracrine manner.
    Moon YJ; Yun CY; Lee JC; Kim JR; Park BH; Cho ES
    J Mol Histol; 2016 Oct; 47(5):445-53. PubMed ID: 27394426
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wnt16 is involved in intramembranous ossification and suppresses osteoblast differentiation through the Wnt/β-catenin pathway.
    Jiang Z; Von den Hoff JW; Torensma R; Meng L; Bian Z
    J Cell Physiol; 2014 Mar; 229(3):384-92. PubMed ID: 24037946
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Osteoblast differentiation in vitro and in vivo promoted by Osterix.
    Fu H; Doll B; McNelis T; Hollinger JO
    J Biomed Mater Res A; 2007 Dec; 83(3):770-8. PubMed ID: 17559111
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Osteogenic gene array of osteoblasts cultured on a novel osteoinductive biphasic calcium phosphate bone grafting material.
    Miron RJ; Shuang Y; Bosshardt DD; Caballé-Serrano J; Chandad F; Zhang Y
    Clin Oral Investig; 2017 Apr; 21(3):801-808. PubMed ID: 27105860
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wnt and hedgehog signaling pathways in bone development.
    Day TF; Yang Y
    J Bone Joint Surg Am; 2008 Feb; 90 Suppl 1():19-24. PubMed ID: 18292352
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Runx2, an inducer of osteoblast and chondrocyte differentiation.
    Komori T
    Histochem Cell Biol; 2018 Apr; 149(4):313-323. PubMed ID: 29356961
    [TBL] [Abstract][Full Text] [Related]  

  • 38. microRNA-103a functions as a mechanosensitive microRNA to inhibit bone formation through targeting Runx2.
    Zuo B; Zhu J; Li J; Wang C; Zhao X; Cai G; Li Z; Peng J; Wang P; Shen C; Huang Y; Xu J; Zhang X; Chen X
    J Bone Miner Res; 2015 Feb; 30(2):330-45. PubMed ID: 25195535
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Advances in Runx2 regulation and its isoforms.
    Li YL; Xiao ZS
    Med Hypotheses; 2007; 68(1):169-75. PubMed ID: 16901655
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glucocorticoid-dependent Wnt signaling by mature osteoblasts is a key regulator of cranial skeletal development in mice.
    Zhou H; Mak W; Kalak R; Street J; Fong-Yee C; Zheng Y; Dunstan CR; Seibel MJ
    Development; 2009 Feb; 136(3):427-36. PubMed ID: 19141672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.