These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 27667638)

  • 1. Highly-stretchable 3D-architected Mechanical Metamaterials.
    Jiang Y; Wang Q
    Sci Rep; 2016 Sep; 6():34147. PubMed ID: 27667638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stretchable 3D lattice conductors.
    Li T; Jiang Y; Yu K; Wang Q
    Soft Matter; 2017 Nov; 13(42):7731-7739. PubMed ID: 28944805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-Dimensional Stretchable Microelectronics by Projection Microstereolithography (PμSL).
    Wang Y; Li X; Fan S; Feng X; Cao K; Ge Q; Gao L; Lu Y
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8901-8908. PubMed ID: 33587597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-material Additive Manufacturing of Metamaterials with Giant, Tailorable Negative Poisson's Ratios.
    Chen D; Zheng X
    Sci Rep; 2018 Jun; 8(1):9139. PubMed ID: 29904093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the Effect of Lattice Topology on Mechanical Properties of SLS Additively Manufactured Sheet-, Ligament-, and Strut-Based Polymeric Metamaterials.
    Abou-Ali AM; Lee DW; Abu Al-Rub RK
    Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soft Elastomers with Programmable Stiffness as Strain-Isolating Substrates for Stretchable Electronics.
    Cai M; Nie S; Du Y; Wang C; Song J
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):14340-14346. PubMed ID: 30938975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable Energy Absorption Characteristics of Architected Honeycombs Enabled via Additive Manufacturing.
    Kumar S; Ubaid J; Abishera R; Schiffer A; Deshpande VS
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42549-42560. PubMed ID: 31566942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy Harvesters for Wearable and Stretchable Electronics: From Flexibility to Stretchability.
    Wu H; Huang Y; Xu F; Duan Y; Yin Z
    Adv Mater; 2016 Dec; 28(45):9881-9919. PubMed ID: 27677428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stretchable and negative-Poisson-ratio porous metamaterials.
    Zhang X; Sun Q; Liang X; Gu P; Hu Z; Yang X; Liu M; Sun Z; Huang J; Wu G; Zu G
    Nat Commun; 2024 Jan; 15(1):392. PubMed ID: 38195718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Print-and-Spray Electromechanical Metamaterials.
    Min T; Cheong E; Lee C; Park D; Kim B; Rodrigue H; Koh JS; Lee D
    Soft Robot; 2022 Oct; 9(5):882-888. PubMed ID: 34704849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electromagnetic Reconfiguration Using Stretchable Mechanical Metamaterials.
    Sakovsky M; Negele J; Costantine J
    Adv Sci (Weinh); 2023 Feb; 10(6):e2203376. PubMed ID: 36599682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of Hierarchically Cut Hinges for Highly Stretchable and Reconfigurable Metamaterials with Enhanced Strength.
    Tang Y; Lin G; Han L; Qiu S; Yang S; Yin J
    Adv Mater; 2015 Nov; 27(44):7181-90. PubMed ID: 26461470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D printed microstructures for flexible electronic devices.
    Liu Y; Xu Y; Avila R; Liu C; Xie Z; Wang L; Yu X
    Nanotechnology; 2019 Oct; 30(41):414001. PubMed ID: 31247596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review: Auxetic Polymer-Based Mechanical Metamaterials for Biomedical Applications.
    Veerabagu U; Palza H; Quero F
    ACS Biomater Sci Eng; 2022 Jul; 8(7):2798-2824. PubMed ID: 35709523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auxetic Mechanical Metamaterials to Enhance Sensitivity of Stretchable Strain Sensors.
    Jiang Y; Liu Z; Matsuhisa N; Qi D; Leow WR; Yang H; Yu J; Chen G; Liu Y; Wan C; Liu Z; Chen X
    Adv Mater; 2018 Mar; 30(12):e1706589. PubMed ID: 29380896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-vat single-cure grayscale digital light processing 3D printing of materials with large property difference and high stretchability.
    Yue L; Macrae Montgomery S; Sun X; Yu L; Song Y; Nomura T; Tanaka M; Jerry Qi H
    Nat Commun; 2023 Mar; 14(1):1251. PubMed ID: 36878943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liquid Metal-Polymer Microlattice Metamaterials with High Fracture Toughness and Damage Recoverability.
    Zhang W; Chen J; Li X; Lu Y
    Small; 2020 Nov; 16(46):e2004190. PubMed ID: 33103341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultralight, ultrastiff mechanical metamaterials.
    Zheng X; Lee H; Weisgraber TH; Shusteff M; DeOtte J; Duoss EB; Kuntz JD; Biener MM; Ge Q; Jackson JA; Kucheyev SO; Fang NX; Spadaccini CM
    Science; 2014 Jun; 344(6190):1373-7. PubMed ID: 24948733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and printing of proprioceptive three-dimensional architected robotic metamaterials.
    Cui H; Yao D; Hensleigh R; Lu H; Calderon A; Xu Z; Davaria S; Wang Z; Mercier P; Tarazaga P; Zheng XR
    Science; 2022 Jun; 376(6599):1287-1293. PubMed ID: 35709267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conductive Elastomers for Stretchable Electronics, Sensors and Energy Harvesters.
    Noh JS
    Polymers (Basel); 2016 Apr; 8(4):. PubMed ID: 30979215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.