These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 27667745)

  • 1. Catalytic Asymmetric Csp3 -H Functionalization under Photoredox Conditions by Radical Translocation and Stereocontrolled Alkene Addition.
    Wang C; Harms K; Meggers E
    Angew Chem Int Ed Engl; 2016 Oct; 55(43):13495-13498. PubMed ID: 27667745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steering Asymmetric Lewis Acid Catalysis Exclusively with Octahedral Metal-Centered Chirality.
    Zhang L; Meggers E
    Acc Chem Res; 2017 Feb; 50(2):320-330. PubMed ID: 28128920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetric Photocatalysis with Bis-cyclometalated Rhodium Complexes.
    Huang X; Meggers E
    Acc Chem Res; 2019 Mar; 52(3):833-847. PubMed ID: 30840435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic Asymmetric Synthesis of Fluoroalkyl-Containing Compounds by Three-Component Photoredox Chemistry.
    Ma J; Xie X; Meggers E
    Chemistry; 2018 Jan; 24(1):259-265. PubMed ID: 29105857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric Radical-Radical Cross-Coupling through Visible-Light-Activated Iridium Catalysis.
    Wang C; Qin J; Shen X; Riedel R; Harms K; Meggers E
    Angew Chem Int Ed Engl; 2016 Jan; 55(2):685-8. PubMed ID: 26629641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Rhodium Catalyst Superior to Iridium Congeners for Enantioselective Radical Amination Activated by Visible Light.
    Shen X; Harms K; Marsch M; Meggers E
    Chemistry; 2016 Jun; 22(27):9102-5. PubMed ID: 27145893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enantioselective catalytic β-amination through proton-coupled electron transfer followed by stereocontrolled radical-radical coupling.
    Zhou Z; Li Y; Han B; Gong L; Meggers E
    Chem Sci; 2017 Aug; 8(8):5757-5763. PubMed ID: 28989615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bis-Cyclometalated Indazole Chiral-at-Rhodium Catalyst for Asymmetric Photoredox Cyanoalkylations.
    Steinlandt PS; Zuo W; Harms K; Meggers E
    Chemistry; 2019 Dec; 25(67):15333-15340. PubMed ID: 31541505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Merging Visible Light Photoredox and Gold Catalysis.
    Hopkinson MN; Tlahuext-Aca A; Glorius F
    Acc Chem Res; 2016 Oct; 49(10):2261-2272. PubMed ID: 27610939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerobic Asymmetric Dehydrogenative Cross-Coupling between Two C(sp3)-H Groups Catalyzed by a Chiral-at-Metal Rhodium Complex.
    Tan Y; Yuan W; Gong L; Meggers E
    Angew Chem Int Ed Engl; 2015 Oct; 54(44):13045-8. PubMed ID: 26351096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enantioselective rhodium/ruthenium photoredox catalysis en route to chiral 1,2-aminoalcohols.
    Ma J; Harms K; Meggers E
    Chem Commun (Camb); 2016 Aug; 52(66):10183-6. PubMed ID: 27462824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visible-Light-Activated Asymmetric β-C-H Functionalization of Acceptor-Substituted Ketones with 1,2-Dicarbonyl Compounds.
    Ma J; Rosales AR; Huang X; Harms K; Riedel R; Wiest O; Meggers E
    J Am Chem Soc; 2017 Dec; 139(48):17245-17248. PubMed ID: 29161036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric photoredox transition-metal catalysis activated by visible light.
    Huo H; Shen X; Wang C; Zhang L; Röse P; Chen LA; Harms K; Marsch M; Hilt G; Meggers E
    Nature; 2014 Nov; 515(7525):100-3. PubMed ID: 25373679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enantioselective photoredox catalysis enabled by proton-coupled electron transfer: development of an asymmetric aza-pinacol cyclization.
    Rono LJ; Yayla HG; Wang DY; Armstrong MF; Knowles RR
    J Am Chem Soc; 2013 Nov; 135(47):17735-8. PubMed ID: 24215561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Introducing the Chiral Transient Directing Group Strategy to Rhodium(III)-Catalyzed Asymmetric C-H Activation.
    Li G; Jiang J; Xie H; Wang J
    Chemistry; 2019 Mar; 25(18):4688-4694. PubMed ID: 30784129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of Alkoxyl Radicals by Photoredox Catalysis Enables Selective C(sp(3))-H Functionalization under Mild Reaction Conditions.
    Zhang J; Li Y; Zhang F; Hu C; Chen Y
    Angew Chem Int Ed Engl; 2016 Jan; 55(5):1872-5. PubMed ID: 26680274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lewis Base-Catalysed Enantioselective Radical Conjugate Addition for the Synthesis of Enantioenriched Pyrrolidinones.
    Hartley WC; Schiel F; Ermini E; Melchiorre P
    Angew Chem Int Ed Engl; 2022 Jun; 61(26):e202204735. PubMed ID: 35452177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photochemical Stereocontrol Using Tandem Photoredox-Chiral Lewis Acid Catalysis.
    Yoon TP
    Acc Chem Res; 2016 Oct; 49(10):2307-2315. PubMed ID: 27505691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic Utilization of α-Aminoalkyl Radicals and Related Species in Visible Light Photoredox Catalysis.
    Nakajima K; Miyake Y; Nishibayashi Y
    Acc Chem Res; 2016 Sep; 49(9):1946-56. PubMed ID: 27505299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper(II)-Catalyzed Asymmetric Photoredox Reactions: Enantioselective Alkylation of Imines Driven by Visible Light.
    Li Y; Zhou K; Wen Z; Cao S; Shen X; Lei M; Gong L
    J Am Chem Soc; 2018 Nov; 140(46):15850-15858. PubMed ID: 30372057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.