These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 27667905)

  • 21. Potential impacts on ecosystem services of land use transitions to second-generation bioenergy crops in GB.
    Milner S; Holland RA; Lovett A; Sunnenberg G; Hastings A; Smith P; Wang S; Taylor G
    Glob Change Biol Bioenergy; 2016 Mar; 8(2):317-333. PubMed ID: 27547244
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatial optimization of cropping pattern for sustainable food and biofuel production with minimal downstream pollution.
    Femeena PV; Sudheer KP; Cibin R; Chaubey I
    J Environ Manage; 2018 Apr; 212():198-209. PubMed ID: 29432999
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potential of cereal-based agricultural residues available for bioenergy production.
    Rocha-Meneses L; Bergamo TF; Kikas T
    Data Brief; 2019 Apr; 23():103829. PubMed ID: 31372465
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aquatic weeds as the next generation feedstock for sustainable bioenergy production.
    Kaur M; Kumar M; Sachdeva S; Puri SK
    Bioresour Technol; 2018 Mar; 251():390-402. PubMed ID: 29254877
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biofuel production from straw hydrolysates: current achievements and perspectives.
    Passoth V; Sandgren M
    Appl Microbiol Biotechnol; 2019 Jul; 103(13):5105-5116. PubMed ID: 31081521
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Environmental life cycle assessment of producing willow, alfalfa and straw from spring barley as feedstocks for bioenergy or biorefinery systems.
    Parajuli R; Knudsen MT; Djomo SN; Corona A; Birkved M; Dalgaard T
    Sci Total Environ; 2017 May; 586():226-240. PubMed ID: 28189306
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RNA-sequencing reveals the complexities of the transcriptional response to lignocellulosic biofuel substrates in
    Pullan ST; Daly P; Delmas S; Ibbett R; Kokolski M; Neiteler A; van Munster JM; Wilson R; Blythe MJ; Gaddipati S; Tucker GA; Archer DB
    Fungal Biol Biotechnol; 2014; 1():3. PubMed ID: 28955445
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A synergistic effect of pretreatment on cell wall structural changes in barley straw (Hordeum vulgare L.) for efficient bioethanol production.
    Sheikh MM; Kim CH; Park HH; Nam HG; Lee GS; Jo HS; Lee JY; Kim JW
    J Sci Food Agric; 2015 Mar; 95(4):843-50. PubMed ID: 25408101
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioethanol Production from Renewable Raw Materials and Its Separation and Purification: A Review.
    Bušić A; Marđetko N; Kundas S; Morzak G; Belskaya H; Ivančić Šantek M; Komes D; Novak S; Šantek B
    Food Technol Biotechnol; 2018 Sep; 56(3):289-311. PubMed ID: 30510474
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomass recalcitrance in barley, wheat and triticale straw: Correlation of biomass quality with classic agronomical traits.
    Ostos Garrido FJ; Pistón F; Gómez LD; McQueen-Mason SJ
    PLoS One; 2018; 13(11):e0205880. PubMed ID: 30403701
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lignocellulosic Biomass: A Sustainable Bioenergy Source for the Future.
    Fatma S; Hameed A; Noman M; Ahmed T; Shahid M; Tariq M; Sohail I; Tabassum R
    Protein Pept Lett; 2018; 25(2):148-163. PubMed ID: 29359659
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interactions among bioenergy feedstock choices, landscape dynamics, and land use.
    Dale VH; Kline KL; Wright LL; Perlack RD; Downing M; Graham RL
    Ecol Appl; 2011 Jun; 21(4):1039-54. PubMed ID: 21774412
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessing energy efficiencies and greenhouse gas emissions under bioethanol-oriented paddy rice production in northern Japan.
    Koga N; Tajima R
    J Environ Manage; 2011 Mar; 92(3):967-73. PubMed ID: 21126818
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potential environmental impact of bioethanol production chain from fiber sorghum to be used in passenger cars.
    Forte A; Zucaro A; Fagnano M; Fierro A
    Sci Total Environ; 2017 Nov; 598():365-376. PubMed ID: 28448928
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments.
    Saini JK; Saini R; Tewari L
    3 Biotech; 2015 Aug; 5(4):337-353. PubMed ID: 28324547
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potential of rice straw for bio-refining: An overview.
    Abraham A; Mathew AK; Sindhu R; Pandey A; Binod P
    Bioresour Technol; 2016 Sep; 215():29-36. PubMed ID: 27067674
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Generating a geospatial database of U.S. regional feedstock production for use in evaluating the environmental footprint of biofuels.
    Holder CT; Cleland JC; LeDuc SD; Andereck Z; Hogan C; Martin KM
    J Air Waste Manag Assoc; 2016 Apr; 66(4):356-65. PubMed ID: 26727486
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Emerging Technologies for the Production of Renewable Liquid Transport Fuels from Biomass Sources Enriched in Plant Cell Walls.
    Tan HT; Corbin KR; Fincher GB
    Front Plant Sci; 2016; 7():1854. PubMed ID: 28018390
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of 'Biofuel'.
    Chandel AK; Singh OV
    Appl Microbiol Biotechnol; 2011 Mar; 89(5):1289-303. PubMed ID: 21181146
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Feedstocks for lignocellulosic biofuels.
    Somerville C; Youngs H; Taylor C; Davis SC; Long SP
    Science; 2010 Aug; 329(5993):790-2. PubMed ID: 20705851
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.