These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 27668486)

  • 21. Landmark and route knowledge in children's spatial representation of a virtual environment.
    Nys M; Gyselinck V; Orriols E; Hickmann M
    Front Psychol; 2014; 5():1522. PubMed ID: 25667573
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Individual differences in route-learning strategy and associated working memory resources.
    Baldwin CL; Reagan I
    Hum Factors; 2009 Jun; 51(3):368-77. PubMed ID: 19750798
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Shape shifting: Local landmarks interfere with navigation by, and recognition of, global shape.
    Buckley MG; Smith AD; Haselgrove M
    J Exp Psychol Learn Mem Cogn; 2014 Mar; 40(2):492-510. PubMed ID: 24245537
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulation of spatial and response strategies by phase of the menstrual cycle in women tested in a virtual navigation task.
    Hussain D; Hanafi S; Konishi K; Brake WG; Bohbot VD
    Psychoneuroendocrinology; 2016 Aug; 70():108-17. PubMed ID: 27213559
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Behavior-dependent directional tuning in the human visual-navigation network.
    Nau M; Navarro Schröder T; Frey M; Doeller CF
    Nat Commun; 2020 Jun; 11(1):3247. PubMed ID: 32591544
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Persistent and stable biases in spatial learning mechanisms predict navigational style.
    Furman AJ; Clements-Stephens AM; Marchette SA; Shelton AL
    Cogn Affect Behav Neurosci; 2014 Dec; 14(4):1375-91. PubMed ID: 24830787
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Age-Related Differences in Associative Learning of Landmarks and Heading Directions in a Virtual Navigation Task.
    Zhong JY; Moffat SD
    Front Aging Neurosci; 2016; 8():122. PubMed ID: 27303290
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Representation of visual landmarks in retrosplenial cortex.
    Fischer LF; Mojica Soto-Albors R; Buck F; Harnett MT
    Elife; 2020 Mar; 9():. PubMed ID: 32154781
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cognitive styles and mental rotation ability in map learning.
    Pazzaglia F; Moè A
    Cogn Process; 2013 Nov; 14(4):391-9. PubMed ID: 23771207
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Navigation experience and mental representations of the environment: do pilots build better cognitive maps?
    Sutton JE; Buset M; Keller M
    PLoS One; 2014; 9(3):e90058. PubMed ID: 24603608
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficacy of navigation may be influenced by retrosplenial cortex-mediated learning of landmark stability.
    Auger SD; Zeidman P; Maguire EA
    Neuropsychologia; 2017 Sep; 104():102-112. PubMed ID: 28802770
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Do humans integrate routes into a cognitive map? Map- versus landmark-based navigation of novel shortcuts.
    Foo P; Warren WH; Duchon A; Tarr MJ
    J Exp Psychol Learn Mem Cogn; 2005 Mar; 31(2):195-215. PubMed ID: 15755239
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sex differences in virtual navigation influenced by scale and navigation experience.
    Padilla LM; Creem-Regehr SH; Stefanucci JK; Cashdan EA
    Psychon Bull Rev; 2017 Apr; 24(2):582-590. PubMed ID: 27714666
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Individual reactions to a multisensory immersive virtual environment: the impact of a wind farm on individuals.
    Ruotolo F; Senese VP; Ruggiero G; Maffei L; Masullo M; Iachini T
    Cogn Process; 2012 Aug; 13 Suppl 1():S319-23. PubMed ID: 22806673
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The functional role of human right hippocampal/parahippocampal theta rhythm in environmental encoding during virtual spatial navigation.
    Pu Y; Cornwell BR; Cheyne D; Johnson BW
    Hum Brain Mapp; 2017 Mar; 38(3):1347-1361. PubMed ID: 27813230
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Route-learning strategies in typical and atypical development; eye tracking reveals atypical landmark selection in Williams syndrome.
    Farran EK; Formby S; Daniyal F; Holmes T; Van Herwegen J
    J Intellect Disabil Res; 2016 Oct; 60(10):933-44. PubMed ID: 27634746
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hippocampal Volume Reduction in Humans Predicts Impaired Allocentric Spatial Memory in Virtual-Reality Navigation.
    Guderian S; Dzieciol AM; Gadian DG; Jentschke S; Doeller CF; Burgess N; Mishkin M; Vargha-Khadem F
    J Neurosci; 2015 Oct; 35(42):14123-31. PubMed ID: 26490854
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dissociable cerebellar activity during spatial navigation and visual memory in bilateral vestibular failure.
    Jandl NM; Sprenger A; Wojak JF; Göttlich M; Münte TF; Krämer UM; Helmchen C
    Neuroscience; 2015 Oct; 305():257-67. PubMed ID: 26255675
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Human Retrosplenial Cortex and Thalamus Code Head Direction in a Global Reference Frame.
    Shine JP; Valdés-Herrera JP; Hegarty M; Wolbers T
    J Neurosci; 2016 Jun; 36(24):6371-81. PubMed ID: 27307227
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wormholes in virtual space: From cognitive maps to cognitive graphs.
    Warren WH; Rothman DB; Schnapp BH; Ericson JD
    Cognition; 2017 Sep; 166():152-163. PubMed ID: 28577445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.