BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 27668666)

  • 1. Nanorod-Nanoflake Interconnected LiMnPO
    Cao X; Pan A; Zhang Y; Li J; Luo Z; Yang X; Liang S; Cao G
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):27632-27641. PubMed ID: 27668666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-Dimensional LiMnPO4·Li3V2(PO4)3/C Nanocomposite as a Bicontinuous Cathode for High-Rate and Long-Life Lithium-Ion Batteries.
    Luo Y; Xu X; Zhang Y; Pi Y; Yan M; Wei Q; Tian X; Mai L
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17527-34. PubMed ID: 26196544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on
    Zhong S; Zhang X; Liu J; Sui Y
    Front Chem; 2020; 8():361. PubMed ID: 32457873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensionally ordered macroporous Li3V2(PO4)3/C nanocomposite cathode material for high-capacity and high-rate Li-ion batteries.
    Li D; Tian M; Xie R; Li Q; Fan X; Gou L; Zhao P; Ma S; Shi Y; Yong HT
    Nanoscale; 2014 Mar; 6(6):3302-8. PubMed ID: 24510276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative investigation of phosphate-based composite cathode materials for lithium-ion batteries.
    Zheng JC; Han YD; Zhang B; Shen C; Ming L; Zhang JF
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):13520-6. PubMed ID: 25090161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Li3V2(PO4)3@C core-shell nanocomposite as a superior cathode material for lithium-ion batteries.
    Duan W; Hu Z; Zhang K; Cheng F; Tao Z; Chen J
    Nanoscale; 2013 Jul; 5(14):6485-90. PubMed ID: 23749042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Li3V2(PO4)3 encapsulated flexible free-standing nanofabric cathodes for fast charging and long life-cycle lithium-ion batteries.
    Sun P; Zhao X; Chen R; Chen T; Ma L; Fan Q; Lu H; Hu Y; Tie Z; Jin Z; Xu Q; Liu J
    Nanoscale; 2016 Apr; 8(14):7408-15. PubMed ID: 26990080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon wrapped hierarchical Li3V2(PO4)3 microspheres for high performance lithium ion batteries.
    Liang S; Tan Q; Xiong W; Tang Y; Tan X; Huang L; Pan A; Cao G
    Sci Rep; 2016 Sep; 6():33682. PubMed ID: 27649860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anthracite-Derived Dual-Phase Carbon-Coated Li
    Ding XK; Zhang LL; Yang XL; Fang H; Zhou YX; Wang JQ; Ma D
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):42788-42796. PubMed ID: 29155556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Bi-doped Li3V2(PO4)3/C cathode material with an enhanced high-rate capacity and long cycle stability for lithium ion batteries.
    Cheng Y; Feng K; Zhou W; Zhang H; Li X; Zhang H
    Dalton Trans; 2015 Oct; 44(40):17579-86. PubMed ID: 26391695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembly of LiMnPO
    Wang C; Li S; Han Y; Lu Z
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):27618-27624. PubMed ID: 28770987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon and RuO2 binary surface coating for the Li3V2(PO4)3 cathode material for lithium-ion batteries.
    Zhang R; Zhang Y; Zhu K; Du F; Fu Q; Yang X; Wang Y; Bie X; Chen G; Wei Y
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12523-30. PubMed ID: 25010184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance improvement of lithium manganese phosphate by controllable morphology tailoring with acid-engaged nano engineering.
    Guo H; Wu C; Liao L; Xie J; Zhang S; Zhu P; Cao G; Zhao X
    Inorg Chem; 2015 Jan; 54(2):667-74. PubMed ID: 25559416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and Electrochemical Properties of Li₃V₂(PO₄)
    Cao X; Mo L; Zhu L; Xie L
    Nanomaterials (Basel); 2017 Feb; 7(3):. PubMed ID: 28336886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manipulating size of Li3V2(PO4)3 with reduced graphene oxide: towards high-performance composite cathode for lithium ion batteries.
    Zhu X; Yan Z; Wu W; Zeng W; Du Y; Zhong Y; Zhai H; Ji H; Zhu Y
    Sci Rep; 2014 Aug; 4():5768. PubMed ID: 25169810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. F-Doping effects on carbon-coated Li
    Wu J; Xu M; Tang C; Li G; He H; Li CM
    Phys Chem Chem Phys; 2018 Jun; 20(22):15192-15202. PubMed ID: 29789841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-Dimensional Honeycomb-Structural LiAlO
    Li J; Luo S; Ding X; Wang Q; He P
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):10786-10795. PubMed ID: 29528209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Li
    Gavrilova T; Deeva Y; Uporova A; Chupakhina T; Yatsyk I; Rogov A; Cherosov M; Batulin R; Khrizanforov M; Khantimerov S
    Int J Mol Sci; 2024 Mar; 25(5):. PubMed ID: 38474129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational Design and Facial Synthesis of Li3V2(PO4)3@C Nanocomposites Using Carbon with Different Dimensions for Ultrahigh-Rate Lithium-Ion Batteries.
    Mao WF; Fu YB; Zhao H; Ai G; Dai YL; Meng D; Zhang XH; Qu D; Liu G; Battaglia VS; Tang ZY
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):12057-66. PubMed ID: 25992951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical Performance of Electrophoretically Deposited Nanostructured LiMnPO4-Sucrose Derived Carbon Composite Electrodes for Lithium Ion Batteries.
    Ravi SP; Praveen P; Sreelakshmi KV; Balakrishnan A; Subramanian KR; Shantikumar V; Lee YS; Sivakumar N
    J Nanosci Nanotechnol; 2015 Jan; 15(1):747-51. PubMed ID: 26328437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.