These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

482 related articles for article (PubMed ID: 27668701)

  • 21. Specific chemical modification of bacterial type I dehydroquinase--opportunities for drug discovery.
    González-Bello C
    Future Med Chem; 2015; 7(17):2371-83. PubMed ID: 26599605
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structures of Bacterial MraY and Human GPT Provide Insights into Rational Antibiotic Design.
    Mashalidis EH; Lee SY
    J Mol Biol; 2020 Aug; 432(18):4946-4963. PubMed ID: 32199982
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The analysis of the antibiotic resistome offers new opportunities for therapeutic intervention.
    Corona F; Blanco P; Alcalde-Rico M; Hernando-Amado S; Lira F; Bernardini A; Sánchez MB; Martínez JL
    Future Med Chem; 2016 Jun; 8(10):1133-51. PubMed ID: 27304087
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel Antibacterial Compounds and their Drug Targets - Successes and Challenges.
    Kaczor AA; Polski A; Sobótka-Polska K; Pachuta-Stec A; Makarska-Bialokoz M; Pitucha M
    Curr Med Chem; 2017; 24(18):1948-1982. PubMed ID: 27978802
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Targeting bacterial topoisomerases: how to counter mechanisms of resistance.
    Tse-Dinh YC
    Future Med Chem; 2016 Jun; 8(10):1085-100. PubMed ID: 27285067
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Emerging bacterial enzyme targets.
    Su Z; Honek JF
    Curr Opin Investig Drugs; 2007 Feb; 8(2):140-9. PubMed ID: 17328230
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Smaller is better for antibiotic discovery.
    Waldrop GL
    ACS Chem Biol; 2009 Jun; 4(6):397-9. PubMed ID: 19537754
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure based discovery of small molecule suppressors targeting bacterial lysozyme inhibitors.
    Voet A; Callewaert L; Ulens T; Vanderkelen L; Vanherreweghe JM; Michiels CW; De Maeyer M
    Biochem Biophys Res Commun; 2011 Feb; 405(4):527-32. PubMed ID: 21256115
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bacterial Polyphosphate Kinases Revisited: Role in Pathogenesis and Therapeutic Potential.
    Gautam LK; Sharma P; Capalash N
    Curr Drug Targets; 2019; 20(3):292-301. PubMed ID: 30068269
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fragment-based discovery of a new class of inhibitors targeting mycobacterial tRNA modification.
    Thomas SE; Whitehouse AJ; Brown K; Burbaud S; Belardinelli JM; Sangen J; Lahiri R; Libardo MDJ; Gupta P; Malhotra S; Boshoff HIM; Jackson M; Abell C; Coyne AG; Blundell TL; Floto RA; Mendes V
    Nucleic Acids Res; 2020 Aug; 48(14):8099-8112. PubMed ID: 32602532
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glutamate racemase as a target for drug discovery.
    Fisher SL
    Microb Biotechnol; 2008 Sep; 1(5):345-60. PubMed ID: 21261855
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bacterial histidine kinases as novel antibacterial drug targets.
    Bem AE; Velikova N; Pellicer MT; Baarlen Pv; Marina A; Wells JM
    ACS Chem Biol; 2015 Jan; 10(1):213-24. PubMed ID: 25436989
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of Shikimate Kinase and Type II Dehydroquinase for Antibiotic Discovery: Structure-Based Design and Simulation Studies.
    Gonzalez-Bello C
    Curr Top Med Chem; 2016; 16(9):960-77. PubMed ID: 26303426
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antibacterial Drug Discovery Targeting the Lipopolysaccharide Biosynthetic Enzyme LpxC.
    Erwin AL
    Cold Spring Harb Perspect Med; 2016 Jul; 6(7):. PubMed ID: 27235477
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How bacterial pathogens eat host lipids: implications for the development of fatty acid synthesis therapeutics.
    Yao J; Rock CO
    J Biol Chem; 2015 Mar; 290(10):5940-6. PubMed ID: 25648887
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lysine biosynthesis in bacteria: a metallodesuccinylase as a potential antimicrobial target.
    Gillner DM; Becker DP; Holz RC
    J Biol Inorg Chem; 2013 Feb; 18(2):155-163. PubMed ID: 23223968
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeting the bacterial SOS response for new antimicrobial agents: drug targets, molecular mechanisms and inhibitors.
    Lanyon-Hogg T
    Future Med Chem; 2021 Jan; 13(2):143-155. PubMed ID: 33410707
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Platensimycin is a selective FabF inhibitor with potent antibiotic properties.
    Wang J; Soisson SM; Young K; Shoop W; Kodali S; Galgoci A; Painter R; Parthasarathy G; Tang YS; Cummings R; Ha S; Dorso K; Motyl M; Jayasuriya H; Ondeyka J; Herath K; Zhang C; Hernandez L; Allocco J; Basilio A; Tormo JR; Genilloud O; Vicente F; Pelaez F; Colwell L; Lee SH; Michael B; Felcetto T; Gill C; Silver LL; Hermes JD; Bartizal K; Barrett J; Schmatz D; Becker JW; Cully D; Singh SB
    Nature; 2006 May; 441(7091):358-61. PubMed ID: 16710421
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of novel inhibitors targeting intracellular steps of peptidoglycan biosynthesis.
    Kotnik M; Anderluh PS; Prezelj A
    Curr Pharm Des; 2007; 13(22):2283-309. PubMed ID: 17692001
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Type II fatty acid synthesis is not a suitable antibiotic target for Gram-positive pathogens.
    Brinster S; Lamberet G; Staels B; Trieu-Cuot P; Gruss A; Poyart C
    Nature; 2009 Mar; 458(7234):83-6. PubMed ID: 19262672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.