These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

474 related articles for article (PubMed ID: 27668701)

  • 41. Type II fatty acid synthesis is not a suitable antibiotic target for Gram-positive pathogens.
    Brinster S; Lamberet G; Staels B; Trieu-Cuot P; Gruss A; Poyart C
    Nature; 2009 Mar; 458(7234):83-6. PubMed ID: 19262672
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mining Fatty Acid Biosynthesis for New Antimicrobials.
    Radka CD; Rock CO
    Annu Rev Microbiol; 2022 Sep; 76():281-304. PubMed ID: 35650664
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Discovery of FabH/FabF inhibitors from natural products.
    Young K; Jayasuriya H; Ondeyka JG; Herath K; Zhang C; Kodali S; Galgoci A; Painter R; Brown-Driver V; Yamamoto R; Silver LL; Zheng Y; Ventura JI; Sigmund J; Ha S; Basilio A; Vicente F; Tormo JR; Pelaez F; Youngman P; Cully D; Barrett JF; Schmatz D; Singh SB; Wang J
    Antimicrob Agents Chemother; 2006 Feb; 50(2):519-26. PubMed ID: 16436705
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Prospects for new antibiotics: a molecule-centered perspective.
    Walsh CT; Wencewicz TA
    J Antibiot (Tokyo); 2014 Jan; 67(1):7-22. PubMed ID: 23756684
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Aminoacyl-tRNA synthetase inhibitors as antimicrobial agents: a patent review from 2006 till present.
    Gadakh B; Van Aerschot A
    Expert Opin Ther Pat; 2012 Dec; 22(12):1453-65. PubMed ID: 23062029
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Proteomics Analysis Reveals a Potential Antibiotic Cocktail Therapy Strategy for Aeromonas hydrophila Infection in Biofilm.
    Li W; Yao Z; Sun L; Hu W; Cao J; Lin W; Lin X
    J Proteome Res; 2016 Jun; 15(6):1810-20. PubMed ID: 27110028
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bacterial DNA replication enzymes as targets for antibacterial drug discovery.
    Sanyal G; Doig P
    Expert Opin Drug Discov; 2012 Apr; 7(4):327-39. PubMed ID: 22458504
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bacterial caseinolytic proteases as novel targets for antibacterial treatment.
    Brötz-Oesterhelt H; Sass P
    Int J Med Microbiol; 2014 Jan; 304(1):23-30. PubMed ID: 24119566
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Research of New Inhibitors of Bacterial Methionine Aminopeptidase by Structure Based Virtual Screening Approach of ZINC DATABASE and In Vitro Validation.
    Boucherit H; Chikhi A; Bensegueni A; Merzoug A; Bolla JM
    Curr Comput Aided Drug Des; 2020; 16(4):389-401. PubMed ID: 31244429
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Discovery of bicyclic inhibitors against menaquinone biosynthesis.
    Choi SR; Larson MA; Hinrichs SH; Bartling AM; Frandsen J; Narayanasamy P
    Future Med Chem; 2016 Jan; 8(1):11-6. PubMed ID: 26699277
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bacterial Transferase MraY, a Source of Inspiration towards New Antibiotics.
    Fer MJ; Corre LL; Pietrancosta N; Evrard-Todeschi N; Olatunji S; Bouhss A; Calvet-Vitale S; Gravier-Pelletier C
    Curr Med Chem; 2018; 25(42):6013-6029. PubMed ID: 29600753
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fragment-based screening identifies novel targets for inhibitors of conjugative transfer of antimicrobial resistance by plasmid pKM101.
    Casu B; Arya T; Bessette B; Baron C
    Sci Rep; 2017 Nov; 7(1):14907. PubMed ID: 29097752
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Discovery and development of kibdelomycin, a new class of broad-spectrum antibiotics targeting the clinically proven bacterial type II topoisomerase.
    Singh SB
    Bioorg Med Chem; 2016 Dec; 24(24):6291-6297. PubMed ID: 27143131
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cell division protein FtsZ: from structure and mechanism to antibiotic target.
    Silber N; Matos de Opitz CL; Mayer C; Sass P
    Future Microbiol; 2020 Jun; 15():801-831. PubMed ID: 32692252
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The potential of bacterial fatty acid biosynthetic enzymes as a source of novel antibacterial agents.
    Payne DJ
    Drug News Perspect; 2004 Apr; 17(3):187-94. PubMed ID: 15179453
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bacterial cell division as a target for new antibiotics.
    Sass P; Brötz-Oesterhelt H
    Curr Opin Microbiol; 2013 Oct; 16(5):522-30. PubMed ID: 23932516
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Advances in the research of inhibitors of enzymes of bacterial peptidoglycan biosynthesis].
    Liu F; Meng HY; Sun ZY; Li DY; Jin YY; Yang ZY; Wu SJ; Chen J
    Yao Xue Xue Bao; 2017 Mar; 52(3):362-70. PubMed ID: 29979555
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Zinc-selective inhibition of the promiscuous bacterial amide-hydrolase DapE: implications of metal heterogeneity for evolution and antibiotic drug design.
    Uda NR; Upert G; Angelici G; Nicolet S; Schmidt T; Schwede T; Creus M
    Metallomics; 2014 Jan; 6(1):88-95. PubMed ID: 24057071
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structure-based design, synthesis, and study of potent inhibitors of beta-ketoacyl-acyl carrier protein synthase III as potential antimicrobial agents.
    Nie Z; Perretta C; Lu J; Su Y; Margosiak S; Gajiwala KS; Cortez J; Nikulin V; Yager KM; Appelt K; Chu S
    J Med Chem; 2005 Mar; 48(5):1596-609. PubMed ID: 15743201
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The inhibition of type I bacterial signal peptidase: Biological consequences and therapeutic potential.
    Craney A; Romesberg FE
    Bioorg Med Chem Lett; 2015 Nov; 25(21):4761-4766. PubMed ID: 26276537
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.