These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 27668828)
1. A Carboxylate Shift Regulates Dioxygen Activation by the Diiron Nonheme β-Hydroxylase CmlA upon Binding of a Substrate-Loaded Nonribosomal Peptide Synthetase. Jasniewski AJ; Knoot CJ; Lipscomb JD; Que L Biochemistry; 2016 Oct; 55(41):5818-5831. PubMed ID: 27668828 [TBL] [Abstract][Full Text] [Related]
2. A family of diiron monooxygenases catalyzing amino acid beta-hydroxylation in antibiotic biosynthesis. Makris TM; Chakrabarti M; Münck E; Lipscomb JD Proc Natl Acad Sci U S A; 2010 Aug; 107(35):15391-6. PubMed ID: 20713732 [TBL] [Abstract][Full Text] [Related]
4. Structure of a dinuclear iron cluster-containing β-hydroxylase active in antibiotic biosynthesis. Makris TM; Knoot CJ; Wilmot CM; Lipscomb JD Biochemistry; 2013 Sep; 52(38):6662-71. PubMed ID: 23980641 [TBL] [Abstract][Full Text] [Related]
5. Oxygen activation by nonheme iron(II) complexes: alpha-keto carboxylate versus carboxylate. Mehn MP; Fujisawa K; Hegg EL; Que L J Am Chem Soc; 2003 Jul; 125(26):7828-42. PubMed ID: 12823001 [TBL] [Abstract][Full Text] [Related]
6. Dioxygen activation at non-heme diiron centers: oxidation of a proximal residue in the I100W variant of toluene/o-xylene monooxygenase hydroxylase. Murray LJ; García-Serres R; McCormick MS; Davydov R; Naik SG; Kim SH; Hoffman BM; Huynh BH; Lippard SJ Biochemistry; 2007 Dec; 46(51):14795-809. PubMed ID: 18044971 [TBL] [Abstract][Full Text] [Related]
7. The Diiron Monooxygenase CmlA from Chloramphenicol Biosynthesis Allows Reconstitution of β-Hydroxylation during Glycopeptide Antibiotic Biosynthesis. Kaniusaite M; Goode RJA; Schittenhelm RB; Makris TM; Cryle MJ ACS Chem Biol; 2019 Dec; 14(12):2932-2941. PubMed ID: 31774267 [TBL] [Abstract][Full Text] [Related]
8. C(sp Lu J; Lai W; Chen H Angew Chem Int Ed Engl; 2022 Nov; 61(46):e202211843. PubMed ID: 36087023 [TBL] [Abstract][Full Text] [Related]
9. Coupling Oxygen Consumption with Hydrocarbon Oxidation in Bacterial Multicomponent Monooxygenases. Wang W; Liang AD; Lippard SJ Acc Chem Res; 2015 Sep; 48(9):2632-9. PubMed ID: 26293615 [TBL] [Abstract][Full Text] [Related]
10. Geometry of the soluble methane monooxygenase catalytic diiron center in two oxidation states. Rosenzweig AC; Nordlund P; Takahara PM; Frederick CA; Lippard SJ Chem Biol; 1995 Sep; 2(9):409-18. PubMed ID: 9432288 [TBL] [Abstract][Full Text] [Related]
11. Geometry of the soluble methane monooxygenase catalytic diiron center in two oxidation states. Rosenzweig AC; Nordlund P; Takahara PM; Frederick CA; Lippard SJ Chem Biol; 1995 Jun; 2(6):409-18. PubMed ID: 9383443 [TBL] [Abstract][Full Text] [Related]
12. Crystallographic analysis of active site contributions to regiospecificity in the diiron enzyme toluene 4-monooxygenase. Bailey LJ; Acheson JF; McCoy JG; Elsen NL; Phillips GN; Fox BG Biochemistry; 2012 Feb; 51(6):1101-13. PubMed ID: 22264099 [TBL] [Abstract][Full Text] [Related]
13. X-ray absorption spectroscopic characterization of the diferric-peroxo intermediate of human deoxyhypusine hydroxylase in the presence of its substrate eIF5a. Jasniewski AJ; Engstrom LM; Vu VV; Park MH; Que L J Biol Inorg Chem; 2016 Sep; 21(5-6):605-18. PubMed ID: 27380180 [TBL] [Abstract][Full Text] [Related]
14. The facial triad in the α-ketoglutarate dependent oxygenase FIH: A role for sterics in linking substrate binding to O Hangasky JA; Taabazuing CY; Martin CB; Eron SJ; Knapp MJ J Inorg Biochem; 2017 Jan; 166():26-33. PubMed ID: 27815979 [TBL] [Abstract][Full Text] [Related]
15. Water affects the stereochemistry and dioxygen reactivity of carboxylate-rich diiron(II) models for the diiron centers in dioxygen-dependent non-heme enzymes. Yoon S; Lippard SJ J Am Chem Soc; 2005 Jun; 127(23):8386-97. PubMed ID: 15941272 [TBL] [Abstract][Full Text] [Related]
16. Active-site structure of a β-hydroxylase in antibiotic biosynthesis. Vu VV; Makris TM; Lipscomb JD; Que L J Am Chem Soc; 2011 May; 133(18):6938-41. PubMed ID: 21506543 [TBL] [Abstract][Full Text] [Related]
17. Hydroxylation of C-H bonds at carboxylate-bridged diiron centres. Lippard SJ Philos Trans A Math Phys Eng Sci; 2005 Apr; 363(1829):861-77; discussion 1035-40. PubMed ID: 15901540 [TBL] [Abstract][Full Text] [Related]
18. Resonance Raman evidence for an Fe-O-Fe center in stearoyl-ACP desaturase. Primary sequence identity with other diiron-oxo proteins. Fox BG; Shanklin J; Ai J; Loehr TM; Sanders-Loehr J Biochemistry; 1994 Nov; 33(43):12776-86. PubMed ID: 7947683 [TBL] [Abstract][Full Text] [Related]
19. Human deoxyhypusine hydroxylase, an enzyme involved in regulating cell growth, activates O2 with a nonheme diiron center. Vu VV; Emerson JP; Martinho M; Kim YS; Münck E; Park MH; Que L Proc Natl Acad Sci U S A; 2009 Sep; 106(35):14814-9. PubMed ID: 19706422 [TBL] [Abstract][Full Text] [Related]
20. Toward functional carboxylate-bridged diiron protein mimics: achieving structural stability and conformational flexibility using a macrocylic ligand framework. Do LH; Lippard SJ J Am Chem Soc; 2011 Jul; 133(27):10568-81. PubMed ID: 21682286 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]