BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 27668856)

  • 21. Microenvironment acidity as a major determinant of tumor chemoresistance: Proton pump inhibitors (PPIs) as a novel therapeutic approach.
    Taylor S; Spugnini EP; Assaraf YG; Azzarito T; Rauch C; Fais S
    Drug Resist Updat; 2015 Nov; 23():69-78. PubMed ID: 26341193
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The bone marrow niche in support of breast cancer dormancy.
    Walker ND; Patel J; Munoz JL; Hu M; Guiro K; Sinha G; Rameshwar P
    Cancer Lett; 2016 Sep; 380(1):263-71. PubMed ID: 26546045
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A bladder cancer microenvironment simulation system based on a microfluidic co-culture model.
    Liu PF; Cao YW; Zhang SD; Zhao Y; Liu XG; Shi HQ; Hu KY; Zhu GQ; Ma B; Niu HT
    Oncotarget; 2015 Nov; 6(35):37695-705. PubMed ID: 26462177
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Tumor Microenvironment of Primitive and Metastatic Breast Cancer: Implications for Novel Therapeutic Strategies.
    Zarrilli G; Businello G; Dieci MV; Paccagnella S; Carraro V; Cappellesso R; Miglietta F; Griguolo G; Guarneri V; Lo Mele M; Fassan M
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33143050
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nano-Strategies to Target Breast Cancer-Associated Fibroblasts: Rearranging the Tumor Microenvironment to Achieve Antitumor Efficacy.
    Truffi M; Mazzucchelli S; Bonizzi A; Sorrentino L; Allevi R; Vanna R; Morasso C; Corsi F
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30871158
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cancer: Macrophages limit chemotherapy.
    De Palma M; Lewis CE
    Nature; 2011 Apr; 472(7343):303-4. PubMed ID: 21512566
    [No Abstract]   [Full Text] [Related]  

  • 27. [Tumor microenvironment and therapeutic resistance process].
    Borriello L; DeClerck YA
    Med Sci (Paris); 2014 Apr; 30(4):445-51. PubMed ID: 24801042
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chemotherapy resistance and stromal targets in breast cancer treatment: a review.
    van der Spek YM; Kroep JR; Tollenaar RAEM; Mesker WE
    Mol Biol Rep; 2020 Oct; 47(10):8169-8177. PubMed ID: 33006013
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of Tumor-infiltrating lymphocytes (TILs) to predict the treatment response to eribulin chemotherapy in breast cancer.
    Kashiwagi S; Asano Y; Goto W; Takada K; Takahashi K; Noda S; Takashima T; Onoda N; Tomita S; Ohsawa M; Hirakawa K; Ohira M
    PLoS One; 2017; 12(2):e0170634. PubMed ID: 28166544
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of the Tumor Microenvironment in Breast Cancer.
    Soysal SD; Tzankov A; Muenst SE
    Pathobiology; 2015 Sep; 82(3-4):142-52. PubMed ID: 26330355
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Battling Chemoresistance in Cancer: Root Causes and Strategies to Uproot Them.
    Ramos A; Sadeghi S; Tabatabaeian H
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502361
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pro-metastatic tumor-stroma interactions in breast cancer.
    Gangadhara S; Barrett-Lee P; Nicholson RI; Hiscox S
    Future Oncol; 2012 Nov; 8(11):1427-42. PubMed ID: 23148616
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of the breast cancer stem cell phenotype by hypoxia-inducible factors.
    Semenza GL
    Clin Sci (Lond); 2015 Dec; 129(12):1037-45. PubMed ID: 26405042
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic reprogramming: the emerging concept and associated therapeutic strategies.
    Yoshida GJ
    J Exp Clin Cancer Res; 2015 Oct; 34():111. PubMed ID: 26445347
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crucial Contributions by T Lymphocytes (Effector, Regulatory, and Checkpoint Inhibitor) and Cytokines (TH1, TH2, and TH17) to a Pathological Complete Response Induced by Neoadjuvant Chemotherapy in Women with Breast Cancer.
    Kaewkangsadan V; Verma C; Eremin JM; Cowley G; Ilyas M; Eremin O
    J Immunol Res; 2016; 2016():4757405. PubMed ID: 27777963
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cancer stem cells and chemosensitivity.
    Maugeri-Saccà M; Vigneri P; De Maria R
    Clin Cancer Res; 2011 Aug; 17(15):4942-7. PubMed ID: 21622723
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tumor microenvironment: The culprit for ovarian cancer metastasis?
    Luo Z; Wang Q; Lau WB; Lau B; Xu L; Zhao L; Yang H; Feng M; Xuan Y; Yang Y; Lei L; Wang C; Yi T; Zhao X; Wei Y; Zhou S
    Cancer Lett; 2016 Jul; 377(2):174-82. PubMed ID: 27131957
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Changes of tumor infiltrating lymphocyte subtypes before and after neoadjuvant endocrine therapy in estrogen receptor-positive breast cancer patients--an immunohistochemical study of Cd8+ and Foxp3+ using double immunostaining with correlation to the pathobiological response of the patients.
    Chan MS; Wang L; Felizola SJ; Ueno T; Toi M; Loo W; Chow LW; Suzuki T; Sasano H
    Int J Biol Markers; 2012 Dec; 27(4):e295-304. PubMed ID: 23280127
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microenvironmental interactions in classical Hodgkin lymphoma and their role in promoting tumor growth, immune escape and drug resistance.
    Aldinucci D; Celegato M; Casagrande N
    Cancer Lett; 2016 Sep; 380(1):243-52. PubMed ID: 26474544
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemotherapy induces the cancer-associated fibroblast phenotype, activating paracrine Hedgehog-GLI signalling in breast cancer cells.
    Peiris-Pagès M; Sotgia F; Lisanti MP
    Oncotarget; 2015 May; 6(13):10728-45. PubMed ID: 25915429
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.