BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 27669249)

  • 1. Estimation of Energy Expenditure Using a Patch-Type Sensor Module with an Incremental Radial Basis Function Neural Network.
    Li M; Kwak KC; Kim YT
    Sensors (Basel); 2016 Sep; 16(10):. PubMed ID: 27669249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Incremental Radial Basis Function Network Based on Information Granules and Its Application.
    Lee MW; Kwak KC
    Comput Intell Neurosci; 2016; 2016():3207627. PubMed ID: 27698658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A wearable sensor module with a neural-network-based activity classification algorithm for daily energy expenditure estimation.
    Lin CW; Yang YT; Wang JS; Yang YC
    IEEE Trans Inf Technol Biomed; 2012 Sep; 16(5):991-8. PubMed ID: 22875251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting energy expenditure from photo-plethysmographic measurements of heart rate under beta blocker therapy: Data driven personalization strategies based on mixed models.
    Bonomi AG; Goldenberg S; Papini G; Kraal J; Stut W; Sartor F; Kemps H
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7642-6. PubMed ID: 26738062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intelligent predictor of energy expenditure with the use of patch-type sensor module.
    Li M; Kwak KC; Kim YT
    Sensors (Basel); 2012 Oct; 12(11):14382-96. PubMed ID: 23202166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic heart rate normalization for accurate energy expenditure estimation. An analysis of activities of daily living and heart rate features.
    Altini M; Penders J; Vullers R; Amft O
    Methods Inf Med; 2014; 53(5):382-8. PubMed ID: 25245124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural network for estimating energy expenditure in paraplegics from heart rate.
    García-Massó X; Serra-Añó P; García-Raffi L; Sánchez-Pérez E; Giner-Pascual M; González LM
    Int J Sports Med; 2014 Nov; 35(12):1037-43. PubMed ID: 24886923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a commercial accelerometer (Tritrac-R3 D) to measure energy expenditure during ambulation.
    Sherman WM; Morris DM; Kirby TE; Petosa RA; Smith BA; Frid DJ; Leenders N
    Int J Sports Med; 1998 Jan; 19(1):43-7. PubMed ID: 9506799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Earbud-based sensor for the assessment of energy expenditure, HR, and VO2max.
    Leboeuf SF; Aumer ME; Kraus WE; Johnson JL; Duscha B
    Med Sci Sports Exerc; 2014; 46(5):1046-52. PubMed ID: 24743110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Personalized cardiorespiratory fitness and energy expenditure estimation using hierarchical Bayesian models.
    Altini M; Casale P; Penders J; Amft O
    J Biomed Inform; 2015 Aug; 56():195-204. PubMed ID: 26079263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Multi-Branch Two-Stage Regression Network for Accurate Energy Expenditure Estimation With ECG and IMU Data.
    Ni Z; Wu T; Wang T; Sun F; Li Y
    IEEE Trans Biomed Eng; 2022 Oct; 69(10):3224-3233. PubMed ID: 35353692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validity of the simultaneous heart rate-motion sensor technique for measuring energy expenditure.
    Strath SJ; Bassett DR; Thompson DL; Swartz AM
    Med Sci Sports Exerc; 2002 May; 34(5):888-94. PubMed ID: 11984311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy Expenditure Estimation of Tabata by Combining Acceleration and Heart Rate.
    Yan Y; Chen Q
    Front Public Health; 2021; 9():804471. PubMed ID: 35198533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing metabolic energy expenditure estimation using wearable multi-sensor network and single accelerometer.
    Dong B; Biswas S; Montoye A; Pfeiffer K
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2866-9. PubMed ID: 24110325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RBFNN Design Based on Modified Nearest Neighbor Clustering Algorithm for Path Tracking Control.
    Zheng D; Jung W; Kim S
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy expenditure estimation in beta-blocker-medicated cardiac patients by combining heart rate and body movement data.
    Kraal JJ; Sartor F; Papini G; Stut W; Peek N; Kemps HM; Bonomi AG
    Eur J Prev Cardiol; 2016 Nov; 23(16):1734-1742. PubMed ID: 27625154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A software sensor model based on hybrid fuzzy neural network for rapid estimation water quality in Guangzhou section of Pearl River, China.
    Zhou C; Zhang C; Tian D; Wang K; Huang M; Liu Y
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018 Jan; 53(1):91-98. PubMed ID: 29083952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multivariate adaptive regression splines models for the prediction of energy expenditure in children and adolescents.
    Zakeri IF; Adolph AL; Puyau MR; Vohra FA; Butte NF
    J Appl Physiol (1985); 2010 Jan; 108(1):128-36. PubMed ID: 19892930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy expenditure estimation during daily military routine with body-fixed sensors.
    Wyss T; Mäder U
    Mil Med; 2011 May; 176(5):494-9. PubMed ID: 21634292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating physiological signal salience for estimating metabolic energy cost from wearable sensors.
    Ingraham KA; Ferris DP; Remy CD
    J Appl Physiol (1985); 2019 Mar; 126(3):717-729. PubMed ID: 30629472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.