These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

992 related articles for article (PubMed ID: 27669357)

  • 1. Surface Chemistry of Semiconducting Quantum Dots: Theoretical Perspectives.
    Kilina SV; Tamukong PK; Kilin DS
    Acc Chem Res; 2016 Oct; 49(10):2127-2135. PubMed ID: 27669357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational insights into CdSe quantum dots' interactions with acetate ligands.
    Tamukong PK; Peiris WD; Kilina S
    Phys Chem Chem Phys; 2016 Jul; 18(30):20499-510. PubMed ID: 27406268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies.
    Prezhdo OV
    Acc Chem Res; 2009 Dec; 42(12):2005-16. PubMed ID: 19888715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of surface ligands on optical and electronic spectra of semiconductor nanoclusters.
    Kilina S; Ivanov S; Tretiak S
    J Am Chem Soc; 2009 Jun; 131(22):7717-26. PubMed ID: 19425603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Passivating ligand and solvent contributions to the electronic properties of semiconductor nanocrystals.
    Fischer SA; Crotty AM; Kilina SV; Ivanov SA; Tretiak S
    Nanoscale; 2012 Feb; 4(3):904-14. PubMed ID: 22170563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure/Property Relations in "Giant" Semiconductor Nanocrystals: Opportunities in Photonics and Electronics.
    Navarro-Pardo F; Zhao H; Wang ZM; Rosei F
    Acc Chem Res; 2018 Mar; 51(3):609-618. PubMed ID: 29260851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Symmetric band structures and asymmetric ultrafast electron and hole relaxations in silicon and germanium quantum dots: time-domain ab initio simulation.
    Hyeon-Deuk K; Madrid AB; Prezhdo OV
    Dalton Trans; 2009 Dec; (45):10069-77. PubMed ID: 19904435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots.
    Kim J; Wong CY; Scholes GD
    Acc Chem Res; 2009 Aug; 42(8):1037-46. PubMed ID: 19425542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phonon-Driven Energy Relaxation in PbS/CdS and PbSe/CdSe Core/Shell Quantum Dots.
    Lystrom L; Tamukong P; Mihaylov D; Kilina S
    J Phys Chem Lett; 2020 Jun; 11(11):4269-4278. PubMed ID: 32354213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of stoichiometry on the electronic structure of PbS quantum dots.
    Kim D; Kim DH; Lee JH; Grossman JC
    Phys Rev Lett; 2013 May; 110(19):196802. PubMed ID: 23705733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of surface states on blinking characteristics of single colloidal CdSe-CdS/ZnS core-multishell quantum dot.
    Xu H; Brismar H; Fu Y
    J Colloid Interface Sci; 2017 Nov; 505():528-536. PubMed ID: 28645036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CdSe Quantum Dots Functionalized with Chiral, Thiol-Free Carboxylic Acids: Unraveling Structural Requirements for Ligand-Induced Chirality.
    Varga K; Tannir S; Haynie BE; Leonard BM; Dzyuba SV; Kubelka J; Balaz M
    ACS Nano; 2017 Oct; 11(10):9846-9853. PubMed ID: 28956912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence and Optical Activity of Chiral CdTe Quantum Dots in Their Interaction with Amino Acids.
    Li G; Fei X; Liu H; Gao J; Nie J; Wang Y; Tian Z; He C; Wang JL; Ji C; Oron D; Yang G
    ACS Nano; 2020 Apr; 14(4):4196-4205. PubMed ID: 32298573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finding and Fixing Traps in II-VI and III-V Colloidal Quantum Dots: The Importance of Z-Type Ligand Passivation.
    Kirkwood N; Monchen JOV; Crisp RW; Grimaldi G; Bergstein HAC; du Fossé I; van der Stam W; Infante I; Houtepen AJ
    J Am Chem Soc; 2018 Nov; 140(46):15712-15723. PubMed ID: 30375226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots.
    De Geyter B; Justo Y; Moreels I; Lambert K; Smet PF; Van Thourhout D; Houtepen AJ; Grodzinska D; de Mello Donega C; Meijerink A; Vanmaekelbergh D; Hens Z
    ACS Nano; 2011 Jan; 5(1):58-66. PubMed ID: 21189031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligands Slow Down Pure-Dephasing in Semiconductor Quantum Dots.
    Liu J; Kilina SV; Tretiak S; Prezhdo OV
    ACS Nano; 2015 Sep; 9(9):9106-16. PubMed ID: 26284384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoexcited electron and hole dynamics in semiconductor quantum dots: phonon-induced relaxation, dephasing, multiple exciton generation and recombination.
    Hyeon-Deuk K; Prezhdo OV
    J Phys Condens Matter; 2012 Sep; 24(36):363201. PubMed ID: 22906924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Ag doping on the electronic and optical properties of CdSe quantum dots.
    Zhao FA; Xiao HY; Bai XM; Zu XT
    Phys Chem Chem Phys; 2019 Aug; 21(29):16108-16119. PubMed ID: 31290876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface ligands increase photoexcitation relaxation rates in CdSe quantum dots.
    Kilina S; Velizhanin KA; Ivanov S; Prezhdo OV; Tretiak S
    ACS Nano; 2012 Jul; 6(7):6515-24. PubMed ID: 22742432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 50.