These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 27669379)
1. Effect of dissimilatory iron and sulfate reduction on arsenic dynamics in the wetland rhizosphere and its bioaccumulation in wetland plants (Scirpus actus). Zhang Z; Moon HS; Myneni SCB; Jaffé PR J Hazard Mater; 2017 Jan; 321():382-389. PubMed ID: 27669379 [TBL] [Abstract][Full Text] [Related]
3. Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite. Burton ED; Johnston SG; Kraal P; Bush RT; Claff S Environ Sci Technol; 2013 Mar; 47(5):2221-9. PubMed ID: 23373718 [TBL] [Abstract][Full Text] [Related]
4. The sulfur depot in the rhizosphere of a common wetland plant, Juncus effusus, can support long-term dynamics of inorganic sulfur transformations. Wiessner A; Kuschk P; Nguyen PM; Müller JA Chemosphere; 2017 Oct; 184():375-383. PubMed ID: 28605708 [TBL] [Abstract][Full Text] [Related]
5. Rhizosphere effect of Scirpus triqueter on soil microbial structure during phytoremediation of diesel-contaminated wetland. Wei J; Liu X; Zhang X; Chen X; Liu S; Chen L Environ Technol; 2014; 35(1-4):514-20. PubMed ID: 24600892 [TBL] [Abstract][Full Text] [Related]
6. Changes in iron, sulfur, and arsenic speciation associated with bacterial sulfate reduction in ferrihydrite-rich systems. Saalfield SL; Bostick BC Environ Sci Technol; 2009 Dec; 43(23):8787-93. PubMed ID: 19943647 [TBL] [Abstract][Full Text] [Related]
7. Rhizosphere effect and its associated soil-microbe interactions drive iron fraction dynamics in tidal wetland soils. Xiao S; Luo M; Liu Y; Bai J; Yang Y; Zhai Z; Huang J Sci Total Environ; 2021 Feb; 756():144056. PubMed ID: 33277009 [TBL] [Abstract][Full Text] [Related]
8. Performance of Eleocharis macrostachya and its importance for arsenic retention in constructed wetlands. Olmos-Márquez MA; Alarcón-Herrera MT; Martín-Domínguez IR Environ Sci Pollut Res Int; 2012 Mar; 19(3):763-71. PubMed ID: 21935698 [TBL] [Abstract][Full Text] [Related]
9. Microbial communities in paddy soils: differences in abundance and functionality between rhizosphere and pore water, the influence of different soil organic carbon, sulfate fertilization and cultivation time, and contribution to arsenic mobility and speciation. Zecchin S; Wang J; Martin M; Romani M; Planer-Friedrich B; Cavalca L FEMS Microbiol Ecol; 2023 Oct; 99(11):. PubMed ID: 37804167 [TBL] [Abstract][Full Text] [Related]
10. Arsenic mobility during flooding of contaminated soil: the effect of microbial sulfate reduction. Burton ED; Johnston SG; Kocar BD Environ Sci Technol; 2014 Dec; 48(23):13660-7. PubMed ID: 25346449 [TBL] [Abstract][Full Text] [Related]
11. Dynamics of arsenic in salt marsh sediments from Dongtan wetland of the Yangtze River Estuary, China. Wang Y; Zhou L; Zheng X; Qian P; Wu Y J Environ Sci (China); 2012; 24(12):2113-21. PubMed ID: 23534207 [TBL] [Abstract][Full Text] [Related]
12. Geochemical control of microbial Fe(III) reduction potential in wetlands: comparison of the rhizosphere to non-rhizosphere soil. Weiss JV; Emerson D; Megonigal JP FEMS Microbiol Ecol; 2004 Apr; 48(1):89-100. PubMed ID: 19712434 [TBL] [Abstract][Full Text] [Related]
13. Arsenic uptake by rice is influenced by microbe-mediated arsenic redox changes in the rhizosphere. Jia Y; Huang H; Chen Z; Zhu YG Environ Sci Technol; 2014 Jan; 48(2):1001-7. PubMed ID: 24383760 [TBL] [Abstract][Full Text] [Related]
14. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China. Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934 [TBL] [Abstract][Full Text] [Related]
15. Dissolution and final fate of arsenic associated with gypsum, calcite, and ferrihydrite: Influence of microbial reduction of As(V), sulfate, and Fe(III). Rios-Valenciana EE; Briones-Gallardo R; Chazaro-Ruiz LF; Lopez-Lozano NE; Sierra-Alvarez R; Celis LB Chemosphere; 2020 Jan; 239():124823. PubMed ID: 31726520 [TBL] [Abstract][Full Text] [Related]
16. Seasonal influence on sulfate reduction and zinc sequestration in subsurface treatment wetlands. Stein OR; Borden-Stewart DJ; Hook PB; Jones WL Water Res; 2007 Aug; 41(15):3440-8. PubMed ID: 17599383 [TBL] [Abstract][Full Text] [Related]
17. Antimony and arsenic partitioning during Fe Karimian N; Johnston SG; Burton ED Chemosphere; 2018 Mar; 195():515-523. PubMed ID: 29277031 [TBL] [Abstract][Full Text] [Related]
18. Sulfate enhances the dissimilatory arsenate-respiring prokaryotes-mediated mobilization, reduction and release of insoluble arsenic and iron from the arsenic-rich sediments into groundwater. Wang J; Zeng XC; Zhu X; Chen X; Zeng X; Mu Y; Yang Y; Wang Y J Hazard Mater; 2017 Oct; 339():409-417. PubMed ID: 28686931 [TBL] [Abstract][Full Text] [Related]
19. Red mud (RM)-Induced enhancement of iron plaque formation reduces arsenic and metal accumulation in two wetland plant species. Yang JX; Guo QJ; Yang J; Zhou XY; Ren HY; Zhang HZ; Xu RX; Wang XD; Peters M; Zhu GX; Wei RF; Tian LY; Han XK Int J Phytoremediation; 2016; 18(3):269-77. PubMed ID: 26505322 [TBL] [Abstract][Full Text] [Related]
20. Fate of caffeine in mesocosms wetland planted with Scirpus validus. Zhang DQ; Hua T; Gersberg RM; Zhu J; Ng WJ; Tan SK Chemosphere; 2013 Jan; 90(4):1568-72. PubMed ID: 23079164 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]