These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 27669392)

  • 1. Understanding and exploring the potentials of household water treatment methods for volatile disinfection by-products control: Kinetics, mechanisms, and influencing factors.
    Ma S; Gan Y; Chen B; Tang Z; Krasner S
    J Hazard Mater; 2017 Jan; 321():509-516. PubMed ID: 27669392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics, mechanisms, and influencing factors on the treatment of haloacetonitriles (HANs) in water by two household heating devices.
    Shi W; Wang L; Chen B
    Chemosphere; 2017 Apr; 172():278-285. PubMed ID: 28086155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradability of DBP precursors after drinking water ozonation.
    de Vera GA; Keller J; Gernjak W; Weinberg H; Farré MJ
    Water Res; 2016 Dec; 106():550-561. PubMed ID: 27771605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling DBPs formation in drinking water in residential plumbing pipes and hot water tanks.
    Chowdhury S; Rodriguez MJ; Sadiq R; Serodes J
    Water Res; 2011 Jan; 45(1):337-47. PubMed ID: 20732706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Secondary formation of disinfection by-products by UV treatment of swimming pool water.
    Spiliotopoulou A; Hansen KM; Andersen HR
    Sci Total Environ; 2015 Jul; 520():96-105. PubMed ID: 25804876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors affecting the formation of disinfection by-products during chlorination and chloramination of secondary effluent for the production of high quality recycled water.
    Doederer K; Gernjak W; Weinberg HS; Farré MJ
    Water Res; 2014 Jan; 48():218-28. PubMed ID: 24095593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Examination of disinfection by-product (DBP) formation in source waters: a study using log-transformed differential spectra.
    Yan M; Korshin GV; Chang HS
    Water Res; 2014 Mar; 50():179-88. PubMed ID: 24374129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling volatilization and adsorption of disinfection byproducts in natural watersheds.
    Jin W; Zhou J; Chen B; Zhu X; Cui C
    J Environ Monit; 2012 Nov; 14(11):2990-9. PubMed ID: 23018447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short-term spatial and temporal variability of disinfection by-product occurrence in small drinking water systems.
    Guilherme S; Rodriguez MJ
    Sci Total Environ; 2015 Jun; 518-519():280-9. PubMed ID: 25770450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of aliphatic halogenated DBP precursors with multiple drinking water treatment processes: Formation potential and integrated toxicity.
    Zhang Y; Chu W; Yao D; Yin D
    J Environ Sci (China); 2017 Aug; 58():322-330. PubMed ID: 28774623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research.
    Richardson SD; Plewa MJ; Wagner ED; Schoeny R; Demarini DM
    Mutat Res; 2007; 636(1-3):178-242. PubMed ID: 17980649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of iodo-trihalomethanes, iodo-haloacetic acids, and haloacetaldehydes during chlorination and chloramination of iodine containing waters in laboratory controlled reactions.
    Postigo C; Richardson SD; Barceló D
    J Environ Sci (China); 2017 Aug; 58():127-134. PubMed ID: 28774601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of plumbing systems on human exposure to disinfection byproducts in water: a case study.
    Chowdhury S
    J Water Health; 2016 Jun; 14(3):489-503. PubMed ID: 27280613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing a silver-impregnated activated carbon with an unmodified activated carbon for disinfection by-product minimisation and precursor removal.
    Watson K; Farré MJ; Knight N
    Sci Total Environ; 2016 Jan; 542(Pt A):672-84. PubMed ID: 26546763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-Nitrosamines and halogenated disinfection byproducts in U.S. Full Advanced Treatment trains for potable reuse.
    Zeng T; Plewa MJ; Mitch WA
    Water Res; 2016 Sep; 101():176-186. PubMed ID: 27262122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of disinfection by-products in canned vegetables caused by water used in their processing.
    Cardador MJ; Gallego M
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2017 Jan; 34(1):10-23. PubMed ID: 27689419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting disinfection by-product formation potential in water.
    Chen B; Westerhoff P
    Water Res; 2010 Jul; 44(13):3755-62. PubMed ID: 20605186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial variation of disinfection by-product concentrations: exposure assessment implications.
    Evans AM; Wright JM; Meyer A; Rivera-Núñez Z
    Water Res; 2013 Oct; 47(16):6130-40. PubMed ID: 23993731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The healthy men study: an evaluation of exposure to disinfection by-products in tap water and sperm quality.
    Luben TJ; Olshan AF; Herring AH; Jeffay S; Strader L; Buus RM; Chan RL; Savitz DA; Singer PC; Weinberg HS; Perreault SD
    Environ Health Perspect; 2007 Aug; 115(8):1169-76. PubMed ID: 17687443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. To add or not to add: the use of quenching agents for the analysis of disinfection by-products in water samples.
    Kristiana I; Lethorn A; Joll C; Heitz A
    Water Res; 2014 Aug; 59():90-8. PubMed ID: 24793107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.