These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Effect of salicylic acid on Fusarium graminearum, the major causal agent of fusarium head blight in wheat. Qi PF; Johnston A; Balcerzak M; Rocheleau H; Harris LJ; Long XY; Wei YM; Zheng YL; Ouellet T Fungal Biol; 2012 Mar; 116(3):413-26. PubMed ID: 22385623 [TBL] [Abstract][Full Text] [Related]
6. Genes Required for the Anti-fungal Activity of a Bacterial Endophyte Isolated from a Corn Landrace Grown Continuously by Subsistence Farmers Since 1000 BC. Shehata HR; Ettinger CL; Eisen JA; Raizada MN Front Microbiol; 2016; 7():1548. PubMed ID: 27757101 [TBL] [Abstract][Full Text] [Related]
7. Impact of transgenic Bt maize residues on the mycotoxigenic plant pathogen Fusarium graminearum and the biocontrol agent Trichoderma atroviride. Naef A; Zesiger T; Défago G J Environ Qual; 2006; 35(4):1001-9. PubMed ID: 16738384 [TBL] [Abstract][Full Text] [Related]
8. Insights Into Triticum aestivum Seedling Root Rot Caused by Fusarium graminearum. Wang Q; Vera Buxa S; Furch A; Friedt W; Gottwald S Mol Plant Microbe Interact; 2015 Dec; 28(12):1288-303. PubMed ID: 26325125 [TBL] [Abstract][Full Text] [Related]
9. Interactions between Fusarium verticillioides, Ustilago maydis, and Zea mays: an endophyte, a pathogen, and their shared plant host. Rodriguez Estrada AE; Jonkers W; Kistler HC; May G Fungal Genet Biol; 2012 Jul; 49(7):578-87. PubMed ID: 22587948 [TBL] [Abstract][Full Text] [Related]
10. Fusarium graminearum Possesses Virulence Factors Common to Fusarium Head Blight of Wheat and Seedling Rot of Soybean but Differing in Their Impact on Disease Severity. Sella L; Gazzetti K; Castiglioni C; Schäfer W; Favaron F Phytopathology; 2014 Nov; 104(11):1201-7. PubMed ID: 24779355 [TBL] [Abstract][Full Text] [Related]
11. The transcription cofactor FgSwi6 plays a role in growth and development, carbendazim sensitivity, cellulose utilization, lithium tolerance, deoxynivalenol production and virulence in the filamentous fungus Fusarium graminearum. Liu N; Fan F; Qiu D; Jiang L Fungal Genet Biol; 2013; 58-59():42-52. PubMed ID: 23994322 [TBL] [Abstract][Full Text] [Related]
12. The stress-activated protein kinase FgOS-2 is a key regulator in the life cycle of the cereal pathogen Fusarium graminearum. Van Thuat N; Schäfer W; Bormann J Mol Plant Microbe Interact; 2012 Sep; 25(9):1142-56. PubMed ID: 22591226 [TBL] [Abstract][Full Text] [Related]
13. Genome-Wide Analysis of Small Secreted Cysteine-Rich Proteins Identifies Candidate Effector Proteins Potentially Involved in Fusarium graminearum-Wheat Interactions. Lu S; Edwards MC Phytopathology; 2016 Feb; 106(2):166-76. PubMed ID: 26524547 [TBL] [Abstract][Full Text] [Related]
14. Genetic diversity and trichothecene chemotypes of the Fusarium graminearum clade isolated from maize in Nepal and identification of a putative new lineage. Desjardins AE; Proctor RH Fungal Biol; 2011 Jan; 115(1):38-48. PubMed ID: 21215953 [TBL] [Abstract][Full Text] [Related]
15. Fusarium graminearum Isolates from Wheat and Maize in New York Show Similar Range of Aggressiveness and Toxigenicity in Cross-Species Pathogenicity Tests. Kuhnem PR; Del Ponte EM; Dong Y; Bergstrom GC Phytopathology; 2015 Apr; 105(4):441-8. PubMed ID: 25338173 [TBL] [Abstract][Full Text] [Related]
16. A Deoxynivalenol-Activated Methionyl-tRNA Synthetase Gene from Wheat Encodes a Nuclear Localized Protein and Protects Plants Against Fusarium Pathogens and Mycotoxins. Zuo DY; Yi SY; Liu RJ; Qu B; Huang T; He WJ; Li C; Li HP; Liao YC Phytopathology; 2016 Jun; 106(6):614-23. PubMed ID: 26882849 [TBL] [Abstract][Full Text] [Related]
17. Fusarium graminearum TRI14 is required for high virulence and DON production on wheat but not for DON synthesis in vitro. Dyer RB; Plattner RD; Kendra DF; Brown DW J Agric Food Chem; 2005 Nov; 53(23):9281-7. PubMed ID: 16277434 [TBL] [Abstract][Full Text] [Related]
18. The Combined Action of ENHANCED DISEASE SUSCEPTIBILITY1, PHYTOALEXIN DEFICIENT4, and SENESCENCE-ASSOCIATED101 Promotes Salicylic Acid-Mediated Defenses to Limit Fusarium graminearum Infection in Arabidopsis thaliana. Makandar R; Nalam VJ; Chowdhury Z; Sarowar S; Klossner G; Lee H; Burdan D; Trick HN; Gobbato E; Parker JE; Shah J Mol Plant Microbe Interact; 2015 Aug; 28(8):943-53. PubMed ID: 25915452 [TBL] [Abstract][Full Text] [Related]
19. Development of a specific TaqMan real-time PCR assay for quantification of Fusarium graminearum clade 7 and comparison of fungal biomass determined by PCR with deoxynivalenol content in wheat and barley. Demeke T; Gräfenhan T; Clear RM; Phan A; Ratnayaka I; Chapados J; Patrick SK; Gaba D; Lévesque CA; Seifert KA Int J Food Microbiol; 2010 Jun; 141(1-2):45-50. PubMed ID: 20483187 [TBL] [Abstract][Full Text] [Related]
20. Susceptibility of Maize to Stalk Rot Caused by Fusarium graminearum Deoxynivalenol and Zearalenone Mutants. Quesada-Ocampo LM; Al-Haddad J; Scruggs AC; Buell CR; Trail F Phytopathology; 2016 Aug; 106(8):920-7. PubMed ID: 27050573 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]