BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

770 related articles for article (PubMed ID: 27669499)

  • 1. Remarkably Improved Electrochemical Performance of Li- and Mn-Rich Cathodes upon Substitution of Mn with Ni.
    Kumar Nayak P; Grinblat J; Levi E; Penki TR; Levi M; Sun YK; Markovsky B; Aurbach D
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4309-4319. PubMed ID: 27669499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the influence of Mg doping for the stabilization of capacity and higher discharge voltage of Li- and Mn-rich cathodes for Li-ion batteries.
    Nayak PK; Grinblat J; Levi E; Levi M; Markovsky B; Aurbach D
    Phys Chem Chem Phys; 2017 Feb; 19(8):6142-6152. PubMed ID: 28191568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Operando EPR for Simultaneous Monitoring of Anionic and Cationic Redox Processes in Li-Rich Metal Oxide Cathodes.
    Tang M; Dalzini A; Li X; Feng X; Chien PH; Song L; Hu YY
    J Phys Chem Lett; 2017 Sep; 8(17):4009-4016. PubMed ID: 28796514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Encouraging Voltage Stability upon Long Cycling of Li-Rich Mn-Based Cathode Materials by Ta-Mo Dual Doping.
    Yang J; Chen Y; Li Y; Xi X; Zheng J; Zhu Y; Xiong Y; Liu S
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):25981-25992. PubMed ID: 34039001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Restriction of voltage decay by limiting low-voltage reduction in Li-rich oxide materials.
    Wu Z; Cheng Y; Shi Y; Xia M; Zhang Y; Hu X; Zhou X; Chen Y; Sun J; Liu Y
    J Colloid Interface Sci; 2022 Aug; 620():57-66. PubMed ID: 35405566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitigating the Surface Degradation and Voltage Decay of Li
    Prakasha KR; Sathish M; Bera P; Prakash AS
    ACS Omega; 2017 May; 2(5):2308-2316. PubMed ID: 31457580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface Modification of Li1.2Ni0.13Mn0.54Co0.13O2 by Hydrazine Vapor as Cathode Material for Lithium-Ion Batteries.
    Zhang J; Lei Z; Wang J; NuLi Y; Yang J
    ACS Appl Mater Interfaces; 2015 Jul; 7(29):15821-9. PubMed ID: 26079270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Nb and F Co-doping on Li
    Ming L; Zhang B; Cao Y; Zhang JF; Wang CH; Wang XW; Li H
    Front Chem; 2018; 6():76. PubMed ID: 29675405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unraveling the Rapid Performance Decay of Layered High-Energy Cathodes: From Nanoscale Degradation to Drastic Bulk Evolution.
    Liu H; Harris KJ; Jiang M; Wu Y; Goward GR; Botton GA
    ACS Nano; 2018 Mar; 12(3):2708-2718. PubMed ID: 29505239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boosting the Electrochemical Performance of Li
    Shu W; Jian Z; Zhou J; Zheng Y; Chen W
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):54916-54923. PubMed ID: 34761909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical Properties of Al
    Liu YC; Wu NL; Liu WR
    J Nanosci Nanotechnol; 2018 Jan; 18(1):68-74. PubMed ID: 29768813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Capacity Layered-Spinel Cathodes for Li-Ion Batteries.
    Nayak PK; Levi E; Grinblat J; Levi M; Markovsky B; Munichandraiah N; Sun YK; Aurbach D
    ChemSusChem; 2016 Sep; 9(17):2404-13. PubMed ID: 27530465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonstoichiometry of Li-rich cathode material with improved cycling ability for lithium-ion batteries.
    Tai Z; Li X; Zhu W; Shi M; Xin Y; Guo S; Wu Y; Chen Y; Liu Y
    J Colloid Interface Sci; 2020 Jun; 570():264-272. PubMed ID: 32163788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural evolution at the oxidative and reductive limits in the first electrochemical cycle of Li
    Yin W; Grimaud A; Rousse G; Abakumov AM; Senyshyn A; Zhang L; Trabesinger S; Iadecola A; Foix D; Giaume D; Tarascon JM
    Nat Commun; 2020 Mar; 11(1):1252. PubMed ID: 32144249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Achieving structural stability and enhanced electrochemical performance through Nb-doping into Li- and Mn-rich layered cathode for lithium-ion batteries.
    Yun S; Yu J; Lee W; Lee H; Yoon WS
    Mater Horiz; 2023 Mar; 10(3):829-841. PubMed ID: 36597945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Mn content on the electrochemical properties of nickel-rich layered LiNi(0.8-x)Co(0.1)Mn(0.1+x)O₂ (0.0 ≤ x ≤ 0.08) cathodes for lithium-ion batteries.
    Zheng J; Kan WH; Manthiram A
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6926-34. PubMed ID: 25756196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance improvement of Li-rich layer-structured Li(1.2)Mn(0.54)Ni(0.13)Co(0.13)O2 by integration with spinel LiNi(0.5)Mn(1.5)O4.
    Feng X; Yang Z; Tang D; Kong Q; Gu L; Wang Z; Chen L
    Phys Chem Chem Phys; 2015 Jan; 17(2):1257-64. PubMed ID: 25420544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving electrochemical performances of Lithium-rich oxide by cooperatively doping Cr and coating Li
    Tai Z; Zhu W; Shi M; Xin Y; Guo S; Wu Y; Chen Y; Liu Y
    J Colloid Interface Sci; 2020 Sep; 576():468-475. PubMed ID: 32473416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Li
    Wang G; Yi L; Yu R; Wang X; Wang Y; Liu Z; Wu B; Liu M; Zhang X; Yang X; Xiong X; Liu M
    ACS Appl Mater Interfaces; 2017 Aug; 9(30):25358-25368. PubMed ID: 28696655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. K(+)-doped Li(1.2)Mn(0.54)Co(0.13)Ni(0.13)O2: a novel cathode material with an enhanced cycling stability for lithium-ion batteries.
    Li Q; Li G; Fu C; Luo D; Fan J; Li L
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10330-41. PubMed ID: 24971575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.