These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
784 related articles for article (PubMed ID: 27669499)
1. Remarkably Improved Electrochemical Performance of Li- and Mn-Rich Cathodes upon Substitution of Mn with Ni. Kumar Nayak P; Grinblat J; Levi E; Penki TR; Levi M; Sun YK; Markovsky B; Aurbach D ACS Appl Mater Interfaces; 2017 Feb; 9(5):4309-4319. PubMed ID: 27669499 [TBL] [Abstract][Full Text] [Related]
2. Understanding the influence of Mg doping for the stabilization of capacity and higher discharge voltage of Li- and Mn-rich cathodes for Li-ion batteries. Nayak PK; Grinblat J; Levi E; Levi M; Markovsky B; Aurbach D Phys Chem Chem Phys; 2017 Feb; 19(8):6142-6152. PubMed ID: 28191568 [TBL] [Abstract][Full Text] [Related]
3. Operando EPR for Simultaneous Monitoring of Anionic and Cationic Redox Processes in Li-Rich Metal Oxide Cathodes. Tang M; Dalzini A; Li X; Feng X; Chien PH; Song L; Hu YY J Phys Chem Lett; 2017 Sep; 8(17):4009-4016. PubMed ID: 28796514 [TBL] [Abstract][Full Text] [Related]
4. Encouraging Voltage Stability upon Long Cycling of Li-Rich Mn-Based Cathode Materials by Ta-Mo Dual Doping. Yang J; Chen Y; Li Y; Xi X; Zheng J; Zhu Y; Xiong Y; Liu S ACS Appl Mater Interfaces; 2021 Jun; 13(22):25981-25992. PubMed ID: 34039001 [TBL] [Abstract][Full Text] [Related]
5. Restriction of voltage decay by limiting low-voltage reduction in Li-rich oxide materials. Wu Z; Cheng Y; Shi Y; Xia M; Zhang Y; Hu X; Zhou X; Chen Y; Sun J; Liu Y J Colloid Interface Sci; 2022 Aug; 620():57-66. PubMed ID: 35405566 [TBL] [Abstract][Full Text] [Related]
6. Mitigating the Surface Degradation and Voltage Decay of Li Prakasha KR; Sathish M; Bera P; Prakash AS ACS Omega; 2017 May; 2(5):2308-2316. PubMed ID: 31457580 [TBL] [Abstract][Full Text] [Related]
7. Surface Modification of Li1.2Ni0.13Mn0.54Co0.13O2 by Hydrazine Vapor as Cathode Material for Lithium-Ion Batteries. Zhang J; Lei Z; Wang J; NuLi Y; Yang J ACS Appl Mater Interfaces; 2015 Jul; 7(29):15821-9. PubMed ID: 26079270 [TBL] [Abstract][Full Text] [Related]
8. Effect of Nb and F Co-doping on Li Ming L; Zhang B; Cao Y; Zhang JF; Wang CH; Wang XW; Li H Front Chem; 2018; 6():76. PubMed ID: 29675405 [TBL] [Abstract][Full Text] [Related]
9. Unraveling the Rapid Performance Decay of Layered High-Energy Cathodes: From Nanoscale Degradation to Drastic Bulk Evolution. Liu H; Harris KJ; Jiang M; Wu Y; Goward GR; Botton GA ACS Nano; 2018 Mar; 12(3):2708-2718. PubMed ID: 29505239 [TBL] [Abstract][Full Text] [Related]
10. Boosting the Electrochemical Performance of Li Shu W; Jian Z; Zhou J; Zheng Y; Chen W ACS Appl Mater Interfaces; 2021 Nov; 13(46):54916-54923. PubMed ID: 34761909 [TBL] [Abstract][Full Text] [Related]
11. Electrochemical Properties of Al Liu YC; Wu NL; Liu WR J Nanosci Nanotechnol; 2018 Jan; 18(1):68-74. PubMed ID: 29768813 [TBL] [Abstract][Full Text] [Related]
12. High-Capacity Layered-Spinel Cathodes for Li-Ion Batteries. Nayak PK; Levi E; Grinblat J; Levi M; Markovsky B; Munichandraiah N; Sun YK; Aurbach D ChemSusChem; 2016 Sep; 9(17):2404-13. PubMed ID: 27530465 [TBL] [Abstract][Full Text] [Related]
13. Nonstoichiometry of Li-rich cathode material with improved cycling ability for lithium-ion batteries. Tai Z; Li X; Zhu W; Shi M; Xin Y; Guo S; Wu Y; Chen Y; Liu Y J Colloid Interface Sci; 2020 Jun; 570():264-272. PubMed ID: 32163788 [TBL] [Abstract][Full Text] [Related]
14. Structural evolution at the oxidative and reductive limits in the first electrochemical cycle of Li Yin W; Grimaud A; Rousse G; Abakumov AM; Senyshyn A; Zhang L; Trabesinger S; Iadecola A; Foix D; Giaume D; Tarascon JM Nat Commun; 2020 Mar; 11(1):1252. PubMed ID: 32144249 [TBL] [Abstract][Full Text] [Related]
15. Achieving structural stability and enhanced electrochemical performance through Nb-doping into Li- and Mn-rich layered cathode for lithium-ion batteries. Yun S; Yu J; Lee W; Lee H; Yoon WS Mater Horiz; 2023 Mar; 10(3):829-841. PubMed ID: 36597945 [TBL] [Abstract][Full Text] [Related]
16. Role of Mn content on the electrochemical properties of nickel-rich layered LiNi(0.8-x)Co(0.1)Mn(0.1+x)O₂ (0.0 ≤ x ≤ 0.08) cathodes for lithium-ion batteries. Zheng J; Kan WH; Manthiram A ACS Appl Mater Interfaces; 2015 Apr; 7(12):6926-34. PubMed ID: 25756196 [TBL] [Abstract][Full Text] [Related]
17. Performance improvement of Li-rich layer-structured Li(1.2)Mn(0.54)Ni(0.13)Co(0.13)O2 by integration with spinel LiNi(0.5)Mn(1.5)O4. Feng X; Yang Z; Tang D; Kong Q; Gu L; Wang Z; Chen L Phys Chem Chem Phys; 2015 Jan; 17(2):1257-64. PubMed ID: 25420544 [TBL] [Abstract][Full Text] [Related]
18. Improving electrochemical performances of Lithium-rich oxide by cooperatively doping Cr and coating Li Tai Z; Zhu W; Shi M; Xin Y; Guo S; Wu Y; Chen Y; Liu Y J Colloid Interface Sci; 2020 Sep; 576():468-475. PubMed ID: 32473416 [TBL] [Abstract][Full Text] [Related]
19. Li Wang G; Yi L; Yu R; Wang X; Wang Y; Liu Z; Wu B; Liu M; Zhang X; Yang X; Xiong X; Liu M ACS Appl Mater Interfaces; 2017 Aug; 9(30):25358-25368. PubMed ID: 28696655 [TBL] [Abstract][Full Text] [Related]
20. K(+)-doped Li(1.2)Mn(0.54)Co(0.13)Ni(0.13)O2: a novel cathode material with an enhanced cycling stability for lithium-ion batteries. Li Q; Li G; Fu C; Luo D; Fan J; Li L ACS Appl Mater Interfaces; 2014 Jul; 6(13):10330-41. PubMed ID: 24971575 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]