BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 27669647)

  • 1. The Tail That Wags the Dog: How the Disordered C-Terminal Domain Controls the Transcriptional Activities of the p53 Tumor-Suppressor Protein.
    Laptenko O; Tong DR; Manfredi J; Prives C
    Trends Biochem Sci; 2016 Dec; 41(12):1022-1034. PubMed ID: 27669647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation Regulates the Bound Structure of an Intrinsically Disordered Protein: The p53-TAZ2 Case.
    Ithuralde RE; Turjanski AG
    PLoS One; 2016; 11(1):e0144284. PubMed ID: 26742101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folding and structural polymorphism of p53 C-terminal domain: One peptide with many conformations.
    Kumar A; Kumar P; Kumari S; Uversky VN; Giri R
    Arch Biochem Biophys; 2020 May; 684():108342. PubMed ID: 32184088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrinsically disordered domain of tumor suppressor p53 facilitates target search by ultrafast transfer between different DNA strands.
    Itoh Y; Murata A; Takahashi S; Kamagata K
    Nucleic Acids Res; 2018 Aug; 46(14):7261-7269. PubMed ID: 29986056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conserved Helix-Flanking Prolines Modulate Intrinsically Disordered Protein:Target Affinity by Altering the Lifetime of the Bound Complex.
    Crabtree MD; Borcherds W; Poosapati A; Shammas SL; Daughdrill GW; Clarke J
    Biochemistry; 2017 May; 56(18):2379-2384. PubMed ID: 28425697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational design using sequence information only produces a peptide that binds to the intrinsically disordered region of p53.
    Kamagata K; Mano E; Itoh Y; Wakamoto T; Kitahara R; Kanbayashi S; Takahashi H; Murata A; Kameda T
    Sci Rep; 2019 Jun; 9(1):8584. PubMed ID: 31253862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding Kinetics of the Intrinsically Disordered p53 Family Transactivation Domains and MDM2.
    Åberg E; Karlsson OA; Andersson E; Jemth P
    J Phys Chem B; 2018 Jul; 122(27):6899-6905. PubMed ID: 29878773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Comprehensive Survey of the Roles of Highly Disordered Proteins in Type 2 Diabetes.
    Du Z; Uversky VN
    Int J Mol Sci; 2017 Sep; 18(10):. PubMed ID: 28934129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature effects on the hydrodynamic radius of the intrinsically disordered N-terminal region of the p53 protein.
    Langridge TD; Tarver MJ; Whitten ST
    Proteins; 2014 Apr; 82(4):668-78. PubMed ID: 24150971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The p53 C terminus controls site-specific DNA binding and promotes structural changes within the central DNA binding domain.
    Laptenko O; Shiff I; Freed-Pastor W; Zupnick A; Mattia M; Freulich E; Shamir I; Kadouri N; Kahan T; Manfredi J; Simon I; Prives C
    Mol Cell; 2015 Mar; 57(6):1034-1046. PubMed ID: 25794615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. p53 Proteoforms and Intrinsic Disorder: An Illustration of the Protein Structure-Function Continuum Concept.
    Uversky VN
    Int J Mol Sci; 2016 Nov; 17(11):. PubMed ID: 27834926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The transient manifold structure of the p53 extreme C-terminal domain: insight into disorder, recognition, and binding promiscuity by molecular dynamics simulations.
    Fadda E; Nixon MG
    Phys Chem Chem Phys; 2017 Aug; 19(32):21287-21296. PubMed ID: 28597880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological significance of a small highly conserved region in the N terminus of the p53 tumour suppressor protein.
    Liu WL; Midgley C; Stephen C; Saville M; Lane DP
    J Mol Biol; 2001 Nov; 313(4):711-31. PubMed ID: 11697899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. p53 searches on DNA by rotation-uncoupled sliding at C-terminal tails and restricted hopping of core domains.
    Terakawa T; Kenzaki H; Takada S
    J Am Chem Soc; 2012 Sep; 134(35):14555-62. PubMed ID: 22880817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HMGB1-mediated DNA bending: Distinct roles in increasing p53 binding to DNA and the transactivation of p53-responsive gene promoters.
    Štros M; Kučírek M; Sani SA; Polanská E
    Biochim Biophys Acta Gene Regul Mech; 2018 Mar; 1861(3):200-210. PubMed ID: 29421308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of p53 activity by IkappaBalpha: evidence suggesting a common phylogeny between NF-kappaB and p53 transcription factors.
    Dreyfus DH; Nagasawa M; Gelfand EW; Ghoda LY
    BMC Immunol; 2005 Jun; 6():12. PubMed ID: 15969767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disorder for Dummies: Functional Mutagenesis of Transient Helical Segments in Disordered Proteins.
    Daughdrill GW
    Methods Mol Biol; 2020; 2141():3-20. PubMed ID: 32696350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational dynamics of p53 N-terminal TAD2 region under different solvent conditions.
    Kumar D; Mishra PM; Gadhave K; Giri R
    Arch Biochem Biophys; 2020 Aug; 689():108459. PubMed ID: 32592801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DSS1/Sem1, a Multifunctional and Intrinsically Disordered Protein.
    Kragelund BB; Schenstrøm SM; Rebula CA; Panse VG; Hartmann-Petersen R
    Trends Biochem Sci; 2016 May; 41(5):446-459. PubMed ID: 26944332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of Androgen Receptor Activity by Transient Interactions of Its Transactivation Domain with General Transcription Regulators.
    De Mol E; Szulc E; Di Sanza C; Martínez-Cristóbal P; Bertoncini CW; Fenwick RB; Frigolé-Vivas M; Masín M; Hunter I; Buzón V; Brun-Heath I; García J; De Fabritiis G; Estébanez-Perpiñá E; McEwan IJ; Nebreda ÁR; Salvatella X
    Structure; 2018 Jan; 26(1):145-152.e3. PubMed ID: 29225078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.