These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 27669700)
1. Behaviour of two typical stents towards a new stent evolution. Simão M; Ferreira JM; Mora-Rodriguez J; Fragata J; Ramos HM Med Biol Eng Comput; 2017 Jun; 55(6):1019-1037. PubMed ID: 27669700 [TBL] [Abstract][Full Text] [Related]
2. Computational fluid dynamics analysis of balloon-expandable coronary stents: influence of stent and vessel deformation. Martin DM; Murphy EA; Boyle FJ Med Eng Phys; 2014 Aug; 36(8):1047-56. PubMed ID: 24953569 [TBL] [Abstract][Full Text] [Related]
3. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling. LaDisa JF; Olson LE; Douglas HA; Warltier DC; Kersten JR; Pagel PS Biomed Eng Online; 2006 Jun; 5():40. PubMed ID: 16780592 [TBL] [Abstract][Full Text] [Related]
4. Haemodynamics Study of Tapered Stents Intervention to Tapered Arteries. Shen X; Jiang J; Deng Y; Zhu H; Lu K Cardiovasc Eng Technol; 2019 Dec; 10(4):583-589. PubMed ID: 31617078 [TBL] [Abstract][Full Text] [Related]
5. Structural analysis of two different stent configurations. Simão M; Ferreira JM; Mora-Rodriguez J; Ramos HM Comput Methods Biomech Biomed Engin; 2017 Jun; 20(8):869-883. PubMed ID: 28317393 [TBL] [Abstract][Full Text] [Related]
6. Sequential Structural and Fluid Dynamics Analysis of Balloon-Expandable Coronary Stents: A Multivariable Statistical Analysis. Martin D; Boyle F Cardiovasc Eng Technol; 2015 Sep; 6(3):314-28. PubMed ID: 26577363 [TBL] [Abstract][Full Text] [Related]
7. Hemodynamics in stented vertebral artery ostial stenosis based on computational fluid dynamics simulations. Qiao A; Dai X; Niu J; Jiao L Comput Methods Biomech Biomed Engin; 2016; 19(11):1190-200. PubMed ID: 26691981 [TBL] [Abstract][Full Text] [Related]
8. Cardiovascular stent design and vessel stresses: a finite element analysis. Lally C; Dolan F; Prendergast PJ J Biomech; 2005 Aug; 38(8):1574-81. PubMed ID: 15958213 [TBL] [Abstract][Full Text] [Related]
9. Three-dimensional computational fluid dynamics modeling of alterations in coronary wall shear stress produced by stent implantation. LaDisa JF; Guler I; Olson LE; Hettrick DA; Kersten JR; Warltier DC; Pagel PS Ann Biomed Eng; 2003 Sep; 31(8):972-80. PubMed ID: 12918912 [TBL] [Abstract][Full Text] [Related]
10. Local hemodynamic changes caused by main branch stent implantation and subsequent virtual side branch balloon angioplasty in a representative coronary bifurcation. Williams AR; Koo BK; Gundert TJ; Fitzgerald PJ; LaDisa JF J Appl Physiol (1985); 2010 Aug; 109(2):532-40. PubMed ID: 20507966 [TBL] [Abstract][Full Text] [Related]
11. Integrating particle tracking with computational fluid dynamics to assess haemodynamic perturbation by coronary artery stents. Boldock L; Inzoli A; Bonardelli S; Hsiao S; Marzo A; Narracott A; Gunn J; Dubini G; Chiastra C; Halliday I; Morris PD; Evans PC; C M P PLoS One; 2022; 17(7):e0271469. PubMed ID: 35901129 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of coronary flow conditions in complex coronary artery bifurcations stenting using computational fluid dynamics: Impact of final proximal optimization technique on different double-stent techniques. Rigatelli G; Zuin M; Dell'Avvocata F; Vassilev D; Daggubati R; Nguyen T; Van Viet Thang N; Foin N Cardiovasc Revasc Med; 2017 Jun; 18(4):233-240. PubMed ID: 28108202 [TBL] [Abstract][Full Text] [Related]
13. Numerical investigations of the haemodynamic changes associated with stent malapposition in an idealised coronary artery. Poon EK; Barlis P; Moore S; Pan WH; Liu Y; Ye Y; Xue Y; Zhu SJ; Ooi AS J Biomech; 2014 Sep; 47(12):2843-51. PubMed ID: 25132633 [TBL] [Abstract][Full Text] [Related]
15. Effects of different stent designs on local hemodynamics in stented arteries. Balossino R; Gervaso F; Migliavacca F; Dubini G J Biomech; 2008; 41(5):1053-61. PubMed ID: 18215394 [TBL] [Abstract][Full Text] [Related]
16. The conical stent in coronary artery improves hemodynamics compared with the traditional cylindrical stent. Yu Y; Zhou Y; Ma Q; Jia S; Wu S; Sun Y; Liu X; Zhao Y; Liu Y; Shi D Int J Cardiol; 2017 Jan; 227():166-171. PubMed ID: 27863293 [TBL] [Abstract][Full Text] [Related]
17. Axial stent strut angle influences wall shear stress after stent implantation: analysis using 3D computational fluid dynamics models of stent foreshortening. LaDisa JF; Olson LE; Hettrick DA; Warltier DC; Kersten JR; Pagel PS Biomed Eng Online; 2005 Oct; 4():59. PubMed ID: 16250918 [TBL] [Abstract][Full Text] [Related]
18. Transient blood flow in elastic coronary arteries with varying degrees of stenosis and dilatations: CFD modelling and parametric study. Wu J; Liu G; Huang W; Ghista DN; Wong KK Comput Methods Biomech Biomed Engin; 2015; 18(16):1835-45. PubMed ID: 25398021 [TBL] [Abstract][Full Text] [Related]
19. The relationship between coronary lesion characteristics and pathologic shear in human coronary arteries. Javadzadegan A; Moshfegh A; Qian Y; Ng MKC; Kritharides L; Yong ASC Clin Biomech (Bristol); 2018 Dec; 60():177-184. PubMed ID: 30384262 [TBL] [Abstract][Full Text] [Related]
20. Time-dependent 3D simulations of the hemodynamics in a stented coronary artery. Faik I; Mongrain R; Leask RL; Rodes-Cabau J; Larose E; Bertrand O Biomed Mater; 2007 Mar; 2(1):S28-37. PubMed ID: 18458417 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]