These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
777 related articles for article (PubMed ID: 27669966)
1. Identification of Useful Nanobodies by Phage Display of Immune Single Domain Libraries Derived from Camelid Heavy Chain Antibodies. Romao E; Morales-Yanez F; Hu Y; Crauwels M; De Pauw P; Hassanzadeh GG; Devoogdt N; Ackaert C; Vincke C; Muyldermans S Curr Pharm Des; 2016; 22(43):6500-6518. PubMed ID: 27669966 [TBL] [Abstract][Full Text] [Related]
2. Easily Established and Multifunctional Synthetic Nanobody Libraries as Research Tools. Liu B; Yang D Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163405 [TBL] [Abstract][Full Text] [Related]
3. A Two-Step Approach for the Design and Generation of Nanobodies. Wagner HJ; Wehrle S; Weiss E; Cavallari M; Weber W Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30400198 [TBL] [Abstract][Full Text] [Related]
4. Characterization and applications of Nanobodies against human procalcitonin selected from a novel naïve Nanobody phage display library. Yan J; Wang P; Zhu M; Li G; Romão E; Xiong S; Wan Y J Nanobiotechnology; 2015 May; 13():33. PubMed ID: 25944262 [TBL] [Abstract][Full Text] [Related]
5. Production and Characterization of Novel Camel Single Domain Antibody Targeting Mouse Vascular Endothelial Growth Factor. Kazemi-Lomedasht F; Behdani M; Habibi-Anbouhi M; Shahbazzadeh D Monoclon Antib Immunodiagn Immunother; 2016 Jun; 35(3):167-71. PubMed ID: 27167350 [TBL] [Abstract][Full Text] [Related]
6. A Novel Nanobody Scaffold Optimized for Bacterial Expression and Suitable for the Construction of Ribosome Display Libraries. Ferrari D; Garrapa V; Locatelli M; Bolchi A Mol Biotechnol; 2020 Jan; 62(1):43-55. PubMed ID: 31720928 [TBL] [Abstract][Full Text] [Related]
7. Introduction to heavy chain antibodies and derived Nanobodies. Vincke C; Muyldermans S Methods Mol Biol; 2012; 911():15-26. PubMed ID: 22886243 [TBL] [Abstract][Full Text] [Related]
8. Streamlined method for parallel identification of single domain antibodies to membrane receptors on whole cells. Rossotti M; Tabares S; Alfaya L; Leizagoyen C; Moron G; González-Sapienza G Biochim Biophys Acta; 2015 Jul; 1850(7):1397-404. PubMed ID: 25819371 [TBL] [Abstract][Full Text] [Related]
9. Generation and characterization of nanobodies against rhGH expressed as sfGFP fusion protein. Abbady AQ; Al-Shemali R; Mir Assaad J; Murad H Gen Comp Endocrinol; 2014 Aug; 204():33-42. PubMed ID: 24859761 [TBL] [Abstract][Full Text] [Related]
10. Selection and Characterization of Specific Nanobody Against Human Immunoglobulin G. Kazemi-Lomedasht F; Behdani M; Rahimpour A; Habibi-Anbouhi M; Poshang-Bagheri K; Shahbazzadeh D Monoclon Antib Immunodiagn Immunother; 2015 Jun; 34(3):201-5. PubMed ID: 26090598 [TBL] [Abstract][Full Text] [Related]
11. Nanobodies: natural single-domain antibodies. Muyldermans S Annu Rev Biochem; 2013; 82():775-97. PubMed ID: 23495938 [TBL] [Abstract][Full Text] [Related]
12. Generation, expression and utilization of single-domain antibodies for in vivo protein localization and manipulation in sea urchin embryos. Schrankel CS; Gökirmak T; Lee CW; Chang G; Hamdoun A Methods Cell Biol; 2019; 151():353-376. PubMed ID: 30948018 [TBL] [Abstract][Full Text] [Related]
13. TRIM28 and β-actin identified via nanobody-based reverse proteomics approach as possible human glioblastoma biomarkers. Jovčevska I; Zupanec N; Kočevar N; Cesselli D; Podergajs N; Stokin CL; Myers MP; Muyldermans S; Ghassabeh GH; Motaln H; Ruaro ME; Bourkoula E; Turnšek TL; Komel R PLoS One; 2014; 9(11):e113688. PubMed ID: 25419715 [TBL] [Abstract][Full Text] [Related]
14. Isolation of nanobodies against Xenopus embryonic antigens using immune and non-immune phage display libraries. Itoh K; Reis AH; Hayhurst A; Sokol SY PLoS One; 2019; 14(5):e0216083. PubMed ID: 31048885 [TBL] [Abstract][Full Text] [Related]
15. Applications of Nanobodies. Muyldermans S Annu Rev Anim Biosci; 2021 Feb; 9():401-421. PubMed ID: 33233943 [TBL] [Abstract][Full Text] [Related]
16. Recent advances in the selection and identification of antigen-specific nanobodies. Liu W; Song H; Chen Q; Yu J; Xian M; Nian R; Feng D Mol Immunol; 2018 Apr; 96():37-47. PubMed ID: 29477934 [TBL] [Abstract][Full Text] [Related]
17. [Preparation and identification of anti-follicle-stimulating hormone receptor nanobodies]. Xia X; M M; Zhai T; Li J Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2013 Aug; 29(8):829-33. PubMed ID: 23948408 [TBL] [Abstract][Full Text] [Related]
18. Microcystin-LR nanobody screening from an alpaca phage display nanobody library and its expression and application. Xu C; Yang Y; Liu L; Li J; Liu X; Zhang X; Liu Y; Zhang C; Liu X Ecotoxicol Environ Saf; 2018 Apr; 151():220-227. PubMed ID: 29353171 [TBL] [Abstract][Full Text] [Related]
19. Characterization of camel nanobodies specific for superfolder GFP fusion proteins. Twair A; Al-Okla S; Zarkawi M; Abbady AQ Mol Biol Rep; 2014 Oct; 41(10):6887-98. PubMed ID: 25085037 [TBL] [Abstract][Full Text] [Related]
20. Development and production of nanobodies specifically against green fluorescence protein. Fang Z; Cao D; Qiu J Appl Microbiol Biotechnol; 2020 Jun; 104(11):4837-4848. PubMed ID: 32270250 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]