These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 27670245)
1. Self-organised silicide nanodot patterning by medium-energy ion beam sputtering of Si(100): local correlation between the morphology and metal content. Redondo-Cubero A; Galiana B; Lorenz K; Palomares FJ; Bahena D; Ballesteros C; Hernandez-Calderón I; Vázquez L Nanotechnology; 2016 Nov; 27(44):444001. PubMed ID: 27670245 [TBL] [Abstract][Full Text] [Related]
2. Surface morphology of molybdenum silicide films upon low-energy ion beam sputtering. Gago R; Jaafar M; Palomares FJ J Phys Condens Matter; 2018 Jul; 30(26):264003. PubMed ID: 29762135 [TBL] [Abstract][Full Text] [Related]
3. Influence of metal co-deposition on silicon nanodot patterning dynamics during ion-beam sputtering. Gago R; Redondo-Cubero A; Palomares FJ; Vázquez L Nanotechnology; 2014 Oct; 25(41):415301. PubMed ID: 25248515 [TBL] [Abstract][Full Text] [Related]
4. Production of nanohole/nanodot patterns on Si(001) by ion beam sputtering with simultaneous metal incorporation. Sánchez-García JA; Gago R; Caillard R; Redondo-Cubero A; Martin-Gago JA; Palomares FJ; Fernández M; Vázquez L J Phys Condens Matter; 2009 Jun; 21(22):224009. PubMed ID: 21715747 [TBL] [Abstract][Full Text] [Related]
5. Tuning the surface morphology in self-organized ion beam nanopatterning of Si(001) via metal incorporation: from holes to dots. Sánchez-García JA; Vázquez L; Gago R; Redondo-Cubero A; Albella JM; Czigány Z Nanotechnology; 2008 Sep; 19(35):355306. PubMed ID: 21828846 [TBL] [Abstract][Full Text] [Related]
6. Self-organized nanodot pattern fabrication using the reverse sputtering method. Iwata N; Mori G; Arai N; Murakami Y; Takahashi A Nanotechnology; 2010 Sep; 21(36):365301. PubMed ID: 20699486 [TBL] [Abstract][Full Text] [Related]
7. The fabrication of metal silicide nanodot arrays using localized ion implantation. Han J; Kim TG; Min BK; Lee SJ Nanotechnology; 2010 Dec; 21(48):485303. PubMed ID: 21063049 [TBL] [Abstract][Full Text] [Related]
8. Topography evolution of 500 keV Ar(4+) ion beam irradiated InP(100) surfaces - formation of self-organized In-rich nano-dots and scaling laws. Sulania I; Agarwal DC; Kumar M; Kumar S; Kumar P Phys Chem Chem Phys; 2016 Jul; 18(30):20363-70. PubMed ID: 27400760 [TBL] [Abstract][Full Text] [Related]
9. Formation of silicon nanodots via ion beam sputtering of ultrathin gold thin film coatings on Si. El-Atwani O; Ortoleva S; Cimaroli A; Allain JP Nanoscale Res Lett; 2011 May; 6(1):403. PubMed ID: 21711934 [TBL] [Abstract][Full Text] [Related]
10. Independence of interrupted coarsening on initial system order: ion-beam nanopatterning of amorphous versus crystalline silicon targets. Muñoz-García J; Gago R; Cuerno R; Sánchez-García JA; Redondo-Cubero A; Castro M; Vázquez L J Phys Condens Matter; 2012 Sep; 24(37):375302. PubMed ID: 22913935 [TBL] [Abstract][Full Text] [Related]
11. Silicide induced ion beam patterning of Si(001). Engler M; Frost F; Müller S; Macko S; Will M; Feder R; Spemann D; Hübner R; Facsko S; Michely T Nanotechnology; 2014 Mar; 25(11):115303. PubMed ID: 24561614 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of Pt nanoparticles and their burrowing into Si due to synergistic effects of ion beam energy losses. Kumar P; Singh UB; Mal K; Ojha S; Sulania I; Kanjilal D; Singh D; Singh VN Beilstein J Nanotechnol; 2014; 5():1864-72. PubMed ID: 25383298 [TBL] [Abstract][Full Text] [Related]
13. Highly ordered nanopatterns on Ge and Si surfaces by ion beam sputtering. Ziberi B; Cornejo M; Frost F; Rauschenbach B J Phys Condens Matter; 2009 Jun; 21(22):224003. PubMed ID: 21715742 [TBL] [Abstract][Full Text] [Related]
14. Concurrent segregation and erosion effects in medium-energy iron beam patterning of silicon surfaces. Redondo-Cubero A; Lorenz K; Palomares FJ; Muñoz A; Castro M; Muñoz-García J; Cuerno R; Vázquez L J Phys Condens Matter; 2018 Jul; 30(27):274001. PubMed ID: 29794326 [TBL] [Abstract][Full Text] [Related]
15. Early stage of ripple formation on Ge(001) surfaces under near-normal ion beam sputtering. Carbone D; Alija A; Plantevin O; Gago R; Facsko S; Metzger TH Nanotechnology; 2008 Jan; 19(3):035304. PubMed ID: 21817567 [TBL] [Abstract][Full Text] [Related]
16. Characterization of ion-irradiation-induced nanodot structures on InP surfaces by atom probe tomography. Gnaser H; Radny T Ultramicroscopy; 2015 Dec; 159 Pt 2():232-9. PubMed ID: 25980895 [TBL] [Abstract][Full Text] [Related]
17. Ion induced dewetting of Au-Si on a SiO Datta DP; Siva V; Varma S; Kanjilal D; Sahoo PK Phys Chem Chem Phys; 2016 Nov; 18(43):29955-29960. PubMed ID: 27762417 [TBL] [Abstract][Full Text] [Related]
18. Morphology and magnetic properties of Fe3O 4 nanodot arrays using template-assisted epitaxial growth. Guan XF; Chen D; Quan ZY; Jiang FX; Deng CH; Gehring GA; Xu XH Nanoscale Res Lett; 2015 Dec; 10(1):2419. PubMed ID: 26055471 [TBL] [Abstract][Full Text] [Related]
19. Shape and Orientation Controlled Hydrothermal Synthesis of Silicide and Metal Dichalcogenide on a Silicon Substrate. Ahmed S; Ding X; Chu X; Li M; Chu D; Ma T; Wu T; Vinu A; Yi J ACS Appl Mater Interfaces; 2020 Apr; 12(16):18850-18858. PubMed ID: 32227975 [TBL] [Abstract][Full Text] [Related]
20. Interfacial electronic structure of gold nanoparticles on Si(100): alloying versus quantum size effects. Sohn Y; Pradhan D; Radi A; Leung KT Langmuir; 2009 Aug; 25(16):9557-63. PubMed ID: 19518081 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]