BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 27670688)

  • 1. Simultaneous Proteomic Discovery and Targeted Monitoring using Liquid Chromatography, Ion Mobility Spectrometry, and Mass Spectrometry.
    Burnum-Johnson KE; Nie S; Casey CP; Monroe ME; Orton DJ; Ibrahim YM; Gritsenko MA; Clauss TR; Shukla AK; Moore RJ; Purvine SO; Shi T; Qian W; Liu T; Baker ES; Smith RD
    Mol Cell Proteomics; 2016 Dec; 15(12):3694-3705. PubMed ID: 27670688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Differential Ion Mobility Device Expands the Depth of Proteome Coverage and the Sensitivity of Multiplex Proteomic Measurements.
    Pfammatter S; Bonneil E; McManus FP; Prasad S; Bailey DJ; Belford M; Dunyach JJ; Thibault P
    Mol Cell Proteomics; 2018 Oct; 17(10):2051-2067. PubMed ID: 30007914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing bottom-up and top-down proteomic measurements with ion mobility separations.
    Baker ES; Burnum-Johnson KE; Ibrahim YM; Orton DJ; Monroe ME; Kelly RT; Moore RJ; Zhang X; Théberge R; Costello CE; Smith RD
    Proteomics; 2015 Aug; 15(16):2766-76. PubMed ID: 26046661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted proteomics of low-level proteins in human plasma by LC/MSn: using human growth hormone as a model system.
    Wu SL; Amato H; Biringer R; Choudhary G; Shieh P; Hancock WS
    J Proteome Res; 2002; 1(5):459-65. PubMed ID: 12645918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased Depth and Breadth of Plasma Protein Quantitation via Two-Dimensional Liquid Chromatography/Multiple Reaction Monitoring-Mass Spectrometry with Labeled Peptide Standards.
    Percy AJ; Yang J; Chambers AG; Borchers CH
    Methods Mol Biol; 2016; 1410():1-21. PubMed ID: 26867735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate Quantitative Proteomic Analyses Using Metabolic Labeling and High Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS).
    Pfammatter S; Bonneil E; McManus FP; Thibault P
    J Proteome Res; 2019 May; 18(5):2129-2138. PubMed ID: 30919622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integrated serum proteomic approach capable of monitoring the low molecular weight proteome with sequencing of intermediate to large peptides.
    Merrell K; Thulin CD; Esplin MS; Graves SW
    Rapid Commun Mass Spectrom; 2009 Sep; 23(17):2685-96. PubMed ID: 19630037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale multiplexed quantitative discovery proteomics enabled by the use of an (18)O-labeled "universal" reference sample.
    Qian WJ; Liu T; Petyuk VA; Gritsenko MA; Petritis BO; Polpitiya AD; Kaushal A; Xiao W; Finnerty CC; Jeschke MG; Jaitly N; Monroe ME; Moore RJ; Moldawer LL; Davis RW; Tompkins RG; Herndon DN; Camp DG; Smith RD;
    J Proteome Res; 2009 Jan; 8(1):290-9. PubMed ID: 19053531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of strong cation exchange versus isoelectric focusing of peptides for multidimensional liquid chromatography-tandem mass spectrometry.
    Slebos RJ; Brock JW; Winters NF; Stuart SR; Martinez MA; Li M; Chambers MC; Zimmerman LJ; Ham AJ; Tabb DL; Liebler DC
    J Proteome Res; 2008 Dec; 7(12):5286-94. PubMed ID: 18939861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Online Peptide fractionation using a multiphasic microfluidic liquid chromatography chip improves reproducibility and detection limits for quantitation in discovery and targeted proteomics.
    Krisp C; Yang H; van Soest R; Molloy MP
    Mol Cell Proteomics; 2015 Jun; 14(6):1708-19. PubMed ID: 25850434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential recovery of peptides from sample tubes and the reproducibility of quantitative proteomic data.
    Bark SJ; Hook V
    J Proteome Res; 2007 Nov; 6(11):4511-6. PubMed ID: 17850064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced sensitivity for selected reaction monitoring mass spectrometry-based targeted proteomics using a dual stage electrodynamic ion funnel interface.
    Hossain M; Kaleta DT; Robinson EW; Liu T; Zhao R; Page JS; Kelly RT; Moore RJ; Tang K; Camp DG; Qian WJ; Smith RD
    Mol Cell Proteomics; 2011 Feb; 10(2):M000062-MCP201. PubMed ID: 20410378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapidly Assessing the Quality of Targeted Proteomics Experiments through Monitoring Stable-Isotope Labeled Standards.
    Gibbons BC; Fillmore TL; Gao Y; Moore RJ; Liu T; Nakayasu ES; Metz TO; Payne SH
    J Proteome Res; 2019 Feb; 18(2):694-699. PubMed ID: 30525668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MRM screening/biomarker discovery with linear ion trap MS: a library of human cancer-specific peptides.
    Yang X; Lazar IM
    BMC Cancer; 2009 Mar; 9():96. PubMed ID: 19327145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards Discovery and Targeted Peptide Biomarker Detection Using nanoESI-TIMS-TOF MS.
    Garabedian A; Benigni P; Ramirez CE; Baker ES; Liu T; Smith RD; Fernandez-Lima F
    J Am Soc Mass Spectrom; 2018 May; 29(5):817-826. PubMed ID: 28889248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous quantification of Cyt c interactions with HSP27 and Bcl-xL using molecularly imprinted polymers (MIPs) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based targeted proteomics.
    Zhang W; Zhang T; Chen Y
    J Proteomics; 2019 Feb; 192():188-195. PubMed ID: 30237093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Technical considerations for large-scale parallel reaction monitoring analysis.
    Gallien S; Bourmaud A; Kim SY; Domon B
    J Proteomics; 2014 Apr; 100():147-59. PubMed ID: 24200835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An LC-IMS-MS platform providing increased dynamic range for high-throughput proteomic studies.
    Baker ES; Livesay EA; Orton DJ; Moore RJ; Danielson WF; Prior DC; Ibrahim YM; LaMarche BL; Mayampurath AM; Schepmoes AA; Hopkins DF; Tang K; Smith RD; Belov ME
    J Proteome Res; 2010 Feb; 9(2):997-1006. PubMed ID: 20000344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Making broad proteome protein measurements in 1-5 min using high-speed RPLC separations and high-accuracy mass measurements.
    Shen Y; Strittmatter EF; Zhang R; Metz TO; Moore RJ; Li F; Udseth HR; Smith RD; Unger KK; Kumar D; Lubda D
    Anal Chem; 2005 Dec; 77(23):7763-73. PubMed ID: 16316187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of a quantitative cysteinyl-peptide enrichment technology for high-throughput quantitative proteomics.
    Liu T; Qian WJ; Camp DG; Smith RD
    Methods Mol Biol; 2007; 359():107-24. PubMed ID: 17484113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.