BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 27670975)

  • 1. Integration and Typologies of Vulnerability to Climate Change: A Case Study from Australian Wheat Sheep Zones.
    Huai J
    Sci Rep; 2016 Sep; 6():33744. PubMed ID: 27670975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corrigendum: Integration and Typologies of Vulnerability to Climate Change: A Case Study from Australian Wheat Sheep Zones.
    Huai J
    Sci Rep; 2017 Jan; 7():40456. PubMed ID: 28079167
    [No Abstract]   [Full Text] [Related]  

  • 3. Role of Livelihood Capital in Reducing Climatic Vulnerability: Insights of Australian Wheat from 1990-2010.
    Huai J
    PLoS One; 2016; 11(3):e0152277. PubMed ID: 27022910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. What actually confers adaptive capacity? Insights from agro-climatic vulnerability of Australian wheat.
    Bryan BA; Huai J; Connor J; Gao L; King D; Kandulu J; Zhao G
    PLoS One; 2015; 10(2):e0117600. PubMed ID: 25668192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SWAT-MODSIM-PSO optimization of multi-crop planning in the Karkheh River Basin, Iran, under the impacts of climate change.
    Fereidoon M; Koch M
    Sci Total Environ; 2018 Jul; 630():502-516. PubMed ID: 29486443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate change vulnerability, adaptation and risk perceptions at farm level in Punjab, Pakistan.
    Abid M; Schilling J; Scheffran J; Zulfiqar F
    Sci Total Environ; 2016 Mar; 547():447-460. PubMed ID: 26836405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Landholder profiling and typologies for natural resource-management policy and program support: potential and constraints.
    Emtage N; Herbohn J; Harrison S
    Environ Manage; 2007 Sep; 40(3):481-92. PubMed ID: 17705039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing future drought impacts on yields based on historical irrigation reaction to drought for four major crops in Kansas.
    Zhang T; Lin X
    Sci Total Environ; 2016 Apr; 550():851-860. PubMed ID: 26851757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adapting crop rotations to climate change in regional impact modelling assessments.
    Teixeira EI; de Ruiter J; Ausseil AG; Daigneault A; Johnstone P; Holmes A; Tait A; Ewert F
    Sci Total Environ; 2018 Mar; 616-617():785-795. PubMed ID: 29103648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vulnerability of maize production under future climate change: possible adaptation strategies.
    Bannayan M; Paymard P; Ashraf B
    J Sci Food Agric; 2016 Oct; 96(13):4465-74. PubMed ID: 26847375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rural Nevada and climate change: vulnerability, beliefs, and risk perception.
    Safi AS; Smith WJ; Liu Z
    Risk Anal; 2012 Jun; 32(6):1041-59. PubMed ID: 22583075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting attention on local vulnerabilities using an integrated index approach: the example of the climate vulnerability index.
    Sullivan C; Meigh J
    Water Sci Technol; 2005; 51(5):69-78. PubMed ID: 15918360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current irrigation practices in the central United States reduce drought and extreme heat impacts for maize and soybean, but not for wheat.
    Zhang T; Lin X; Sassenrath GF
    Sci Total Environ; 2015 Mar; 508():331-42. PubMed ID: 25497355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in time of sowing, flowering and maturity of cereals in Europe under climate change.
    Olesen JE; Børgesen CD; Elsgaard L; Palosuo T; Rötter RP; Skjelvåg AO; Peltonen-Sainio P; Börjesson T; Trnka M; Ewert F; Siebert S; Brisson N; Eitzinger J; van Asselt ED; Oberforster M; van der Fels-Klerx HJ
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(10):1527-42. PubMed ID: 22934894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes of anti-oxidative enzymes and MDA content under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at maturation stage.
    HongBo S; ZongSuo L; MingAn S
    Colloids Surf B Biointerfaces; 2005 Sep; 45(1):7-13. PubMed ID: 16102947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An empirical, hierarchical typology of tree species assemblages for assessing forest dynamics under global change scenarios.
    Costanza JK; Coulston JW; Wear DN
    PLoS One; 2017; 12(9):e0184062. PubMed ID: 28877258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An integrated risk and vulnerability assessment framework for climate change and malaria transmission in East Africa.
    Onyango EA; Sahin O; Awiti A; Chu C; Mackey B
    Malar J; 2016 Nov; 15(1):551. PubMed ID: 27835976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comprehensively quantitative method of evaluating the impact of drought on crop yield using daily multi-scale SPEI and crop growth process model.
    Wang Q; Wu J; Li X; Zhou H; Yang J; Geng G; An X; Liu L; Tang Z
    Int J Biometeorol; 2017 Apr; 61(4):685-699. PubMed ID: 27888338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat tolerance around flowering in wheat identified as a key trait for increased yield potential in Europe under climate change.
    Stratonovitch P; Semenov MA
    J Exp Bot; 2015 Jun; 66(12):3599-609. PubMed ID: 25750425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High night temperatures during grain number determination reduce wheat and barley grain yield: a field study.
    García GA; Dreccer MF; Miralles DJ; Serrago RA
    Glob Chang Biol; 2015 Nov; 21(11):4153-64. PubMed ID: 26111197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.