These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 27671086)

  • 1. Development of steady-state electrical-heating fluorescence-sensing (SEF) technique for thermal characterization of one dimensional (1D) structures by employing graphene quantum dots (GQDs) as temperature sensors.
    Wan X; Li C; Yue Y; Xie D; Xue M; Hu N
    Nanotechnology; 2016 Nov; 27(44):445706. PubMed ID: 27671086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous measurements of the specific heat and thermal conductivity of suspended thin samples by transient electrothermal method.
    Feng B; Ma W; Li Z; Zhang X
    Rev Sci Instrum; 2009 Jun; 80(6):064901. PubMed ID: 19566218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of Excitation Independent Highly Luminescent Graphene Quantum Dots through Perchloric Acid Oxidation.
    Maiti S; Kundu S; Roy CN; Das TK; Saha A
    Langmuir; 2017 Dec; 33(51):14634-14642. PubMed ID: 29172551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modified data analysis for thermal conductivity measurements of polycrystalline silicon microbridges using a steady state Joule heating technique.
    Sayer RA; Piekos ES; Phinney LM
    Rev Sci Instrum; 2012 Dec; 83(12):124904. PubMed ID: 23278015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC.
    Yue Y; Zhang J; Wang X
    Small; 2011 Dec; 7(23):3324-33. PubMed ID: 21997970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence spectroscopy of graphene quantum dots: temperature effect at different excitation wavelengths.
    Li C; Yue Y
    Nanotechnology; 2014 Oct; 25(43):435703. PubMed ID: 25299977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A direct differential method for measuring thermal conductivity of thin films.
    Zeng Y; Marconnet A
    Rev Sci Instrum; 2017 Apr; 88(4):044901. PubMed ID: 28456238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-contact T-type Raman method for measurement of thermophysical properties of micro-/nanowires.
    Liu J; Liu H; Ma W; Zhang X
    Rev Sci Instrum; 2019 Apr; 90(4):044901. PubMed ID: 31042976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-high resolution steady-state micro-thermometry using a bipolar direct current reversal technique.
    Wu JY; Wu W; Pettes MT
    Rev Sci Instrum; 2016 Sep; 87(9):094901. PubMed ID: 27782596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel composite of graphene quantum dots and molecularly imprinted polymer for fluorescent detection of paranitrophenol.
    Zhou Y; Qu ZB; Zeng Y; Zhou T; Shi G
    Biosens Bioelectron; 2014 Feb; 52():317-23. PubMed ID: 24080211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple differential steady-state method to measure the thermal conductivity of solid bulk materials with high accuracy.
    Kraemer D; Chen G
    Rev Sci Instrum; 2014 Feb; 85(2):025108. PubMed ID: 24593397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature Dependence of Thermal Conductivity of Giant-Scale Supported Monolayer Graphene.
    Liu J; Li P; Xu S; Xie Y; Wang Q; Ma L
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of valine-functionalized graphene quantum dots and its use as a novel optical probe for sensitive and selective detection of Hg
    Xiaoyan Z; Zhangyi L; Zaijun L
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 171():415-424. PubMed ID: 27569775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High temperature thermal conductivity of platinum microwire by 3ω method.
    Bhatta RP; Annamalai S; Mohr RK; Brandys M; Pegg IL; Dutta B
    Rev Sci Instrum; 2010 Nov; 81(11):114904. PubMed ID: 21133493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen- Doped Graphene Quantum Dots: "Turn-off" Fluorescent Probe for Detection of Ag(+) Ions.
    Tabaraki R; Nateghi A
    J Fluoresc; 2016 Jan; 26(1):297-305. PubMed ID: 26553027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-Mode SERS-Fluorescence Immunoassay Using Graphene Quantum Dot Labeling on One-Dimensional Aligned Magnetoplasmonic Nanoparticles.
    Zou F; Zhou H; Tan TV; Kim J; Koh K; Lee J
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):12168-75. PubMed ID: 26006156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel and high-performance asymmetric micro-supercapacitors based on graphene quantum dots and polyaniline nanofibers.
    Liu W; Yan X; Chen J; Feng Y; Xue Q
    Nanoscale; 2013 Jul; 5(13):6053-62. PubMed ID: 23720009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfabricated thermal conductivity sensor: a high resolution tool for quantitative thermal property measurement of biomaterials and solutions.
    Liang XM; Ding W; Chen HH; Shu Z; Zhao G; Zhang HF; Gao D
    Biomed Microdevices; 2011 Oct; 13(5):923-8. PubMed ID: 21710370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Sensitive and Selective Detection of Nanomolar Ferric Ions Using Dopamine Functionalized Graphene Quantum Dots.
    Dutta Chowdhury A; Doong RA
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):21002-10. PubMed ID: 27472083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved 3-omega measurement of thermal conductivity in liquid, gases, and powders using a metal-coated optical fiber.
    Schiffres SN; Malen JA
    Rev Sci Instrum; 2011 Jun; 82(6):064903. PubMed ID: 21721720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.