BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 27671251)

  • 1. A new NAD
    Wu X; Xu L; Yan M
    Biosci Biotechnol Biochem; 2016 Dec; 80(12):2306-2310. PubMed ID: 27671251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of coenzyme binding by a single point mutation at the coenzyme binding domain of E. coli lactaldehyde dehydrogenase.
    Rodríguez-Zavala JS
    Protein Sci; 2008 Mar; 17(3):563-70. PubMed ID: 18218709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative enzymatic properties of GapB-encoded erythrose-4-phosphate dehydrogenase of Escherichia coli and phosphorylating glyceraldehyde-3-phosphate dehydrogenase.
    Boschi-Muller S; Azza S; Pollastro D; Corbier C; Branlant G
    J Biol Chem; 1997 Jun; 272(24):15106-12. PubMed ID: 9182530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of lactaldehyde dehydrogenase from Escherichia coli and inferences regarding substrate and cofactor specificity.
    Di Costanzo L; Gomez GA; Christianson DW
    J Mol Biol; 2007 Feb; 366(2):481-93. PubMed ID: 17173928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional characterization of the phosphorylating D-glyceraldehyde 3-phosphate dehydrogenase from the archaeon Methanothermus fervidus by comparative molecular modelling and site-directed mutagenesis.
    Talfournier F; Colloc'h N; Mornon JP; Branlant G
    Eur J Biochem; 1999 Oct; 265(1):93-104. PubMed ID: 10491162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical characterization of gapB-encoded erythrose 4-phosphate dehydrogenase of Escherichia coli K-12 and its possible role in pyridoxal 5'-phosphate biosynthesis.
    Zhao G; Pease AJ; Bharani N; Winkler ME
    J Bacteriol; 1995 May; 177(10):2804-12. PubMed ID: 7751290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of aldehyde dehydrogenase in an Escherichia coli mutant selected for growth on the rare sugar L-galactose.
    Zhu Y; Lin EC
    J Bacteriol; 1987 Feb; 169(2):785-9. PubMed ID: 3542971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A shared binding site for NAD+ and coenzyme A in an acetaldehyde dehydrogenase involved in bacterial degradation of aromatic compounds.
    Lei Y; Pawelek PD; Powlowski J
    Biochemistry; 2008 Jul; 47(26):6870-82. PubMed ID: 18537268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of 2-oxoaldehydes in yeasts. Purification and characterization of lactaldehyde dehydrogenase from Saccharomyces cerevisiae.
    Inoue Y; Watanabe K; Shimosaka M; Saikusa T; Fukuda Y; Murata K; Kimura A
    Eur J Biochem; 1985 Dec; 153(2):243-7. PubMed ID: 3908097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of an iron-dependent group III dehydrogenase that interconverts L-lactaldehyde and L-1,2-propanediol in Escherichia coli.
    Montella C; Bellsolell L; Pérez-Luque R; Badía J; Baldoma L; Coll M; Aguilar J
    J Bacteriol; 2005 Jul; 187(14):4957-66. PubMed ID: 15995211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-directed mutagenesis of histidine-90 in Escherichia coli L-threonine dehydrogenase alters its substrate specificity.
    Johnson AR; Dekker EE
    Arch Biochem Biophys; 1998 Mar; 351(1):8-16. PubMed ID: 9500838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glyceraldehyde dehydrogenases from the thermoacidophilic euryarchaeota Picrophilus torridus and Thermoplasma acidophilum, key enzymes of the non-phosphorylative Entner-Doudoroff pathway, constitute a novel enzyme family within the aldehyde dehydrogenase superfamily.
    Reher M; Schönheit P
    FEBS Lett; 2006 Feb; 580(5):1198-204. PubMed ID: 16458304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism of L-fucose and L-rhamnose in Escherichia coli: aerobic-anaerobic regulation of L-lactaldehyde dissimilation.
    Baldomà L; Aguilar J
    J Bacteriol; 1988 Jan; 170(1):416-21. PubMed ID: 3275622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of lactaldehyde dehydrogenase in several metabolic pathways of Escherichia coli K12.
    Baldomà L; Aguilar J
    J Biol Chem; 1987 Oct; 262(29):13991-6. PubMed ID: 3308886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38.
    Johnson AR; Chen YW; Dekker EE
    Arch Biochem Biophys; 1998 Oct; 358(2):211-21. PubMed ID: 9784233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineered glycolytic glyceraldehyde-3-phosphate dehydrogenase binds the anti conformation of NAD+ nicotinamide but does not experience A-specific hydride transfer.
    Eyschen J; Vitoux B; Marraud M; Cung MT; Branlant G
    Arch Biochem Biophys; 1999 Apr; 364(2):219-27. PubMed ID: 10190977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein engineering of a thermostable polyol dehydrogenase.
    Wulf H; Mallin H; Bornscheuer UT
    Enzyme Microb Technol; 2012 Sep; 51(4):217-24. PubMed ID: 22883556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of cysteine 289 in the catalytic activity of an NADP(+)-specific fatty aldehyde dehydrogenase from Vibrio harveyi.
    Vedadi M; Szittner R; Smillie L; Meighen E
    Biochemistry; 1995 Dec; 34(51):16725-32. PubMed ID: 8527447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apo and holo crystal structures of an NADP-dependent aldehyde dehydrogenase from Streptococcus mutans.
    Cobessi D; Tête-Favier F; Marchal S; Azza S; Branlant G; Aubry A
    J Mol Biol; 1999 Jul; 290(1):161-73. PubMed ID: 10388564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene cloning, expression, and characterization of a novel acetaldehyde dehydrogenase from Issatchenkia terricola strain XJ-2.
    Yao Z; Zhang C; Lu F; Bie X; Lu Z
    Appl Microbiol Biotechnol; 2012 Mar; 93(5):1999-2009. PubMed ID: 21858493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.