These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 27671251)
1. A new NAD Wu X; Xu L; Yan M Biosci Biotechnol Biochem; 2016 Dec; 80(12):2306-2310. PubMed ID: 27671251 [TBL] [Abstract][Full Text] [Related]
2. Enhancement of coenzyme binding by a single point mutation at the coenzyme binding domain of E. coli lactaldehyde dehydrogenase. Rodríguez-Zavala JS Protein Sci; 2008 Mar; 17(3):563-70. PubMed ID: 18218709 [TBL] [Abstract][Full Text] [Related]
3. Comparative enzymatic properties of GapB-encoded erythrose-4-phosphate dehydrogenase of Escherichia coli and phosphorylating glyceraldehyde-3-phosphate dehydrogenase. Boschi-Muller S; Azza S; Pollastro D; Corbier C; Branlant G J Biol Chem; 1997 Jun; 272(24):15106-12. PubMed ID: 9182530 [TBL] [Abstract][Full Text] [Related]
4. Crystal structure of lactaldehyde dehydrogenase from Escherichia coli and inferences regarding substrate and cofactor specificity. Di Costanzo L; Gomez GA; Christianson DW J Mol Biol; 2007 Feb; 366(2):481-93. PubMed ID: 17173928 [TBL] [Abstract][Full Text] [Related]
5. Functional characterization of the phosphorylating D-glyceraldehyde 3-phosphate dehydrogenase from the archaeon Methanothermus fervidus by comparative molecular modelling and site-directed mutagenesis. Talfournier F; Colloc'h N; Mornon JP; Branlant G Eur J Biochem; 1999 Oct; 265(1):93-104. PubMed ID: 10491162 [TBL] [Abstract][Full Text] [Related]
6. Biochemical characterization of gapB-encoded erythrose 4-phosphate dehydrogenase of Escherichia coli K-12 and its possible role in pyridoxal 5'-phosphate biosynthesis. Zhao G; Pease AJ; Bharani N; Winkler ME J Bacteriol; 1995 May; 177(10):2804-12. PubMed ID: 7751290 [TBL] [Abstract][Full Text] [Related]
7. Loss of aldehyde dehydrogenase in an Escherichia coli mutant selected for growth on the rare sugar L-galactose. Zhu Y; Lin EC J Bacteriol; 1987 Feb; 169(2):785-9. PubMed ID: 3542971 [TBL] [Abstract][Full Text] [Related]
8. A shared binding site for NAD+ and coenzyme A in an acetaldehyde dehydrogenase involved in bacterial degradation of aromatic compounds. Lei Y; Pawelek PD; Powlowski J Biochemistry; 2008 Jul; 47(26):6870-82. PubMed ID: 18537268 [TBL] [Abstract][Full Text] [Related]
9. Metabolism of 2-oxoaldehydes in yeasts. Purification and characterization of lactaldehyde dehydrogenase from Saccharomyces cerevisiae. Inoue Y; Watanabe K; Shimosaka M; Saikusa T; Fukuda Y; Murata K; Kimura A Eur J Biochem; 1985 Dec; 153(2):243-7. PubMed ID: 3908097 [TBL] [Abstract][Full Text] [Related]
10. Crystal structure of an iron-dependent group III dehydrogenase that interconverts L-lactaldehyde and L-1,2-propanediol in Escherichia coli. Montella C; Bellsolell L; Pérez-Luque R; Badía J; Baldoma L; Coll M; Aguilar J J Bacteriol; 2005 Jul; 187(14):4957-66. PubMed ID: 15995211 [TBL] [Abstract][Full Text] [Related]
11. Site-directed mutagenesis of histidine-90 in Escherichia coli L-threonine dehydrogenase alters its substrate specificity. Johnson AR; Dekker EE Arch Biochem Biophys; 1998 Mar; 351(1):8-16. PubMed ID: 9500838 [TBL] [Abstract][Full Text] [Related]
12. Glyceraldehyde dehydrogenases from the thermoacidophilic euryarchaeota Picrophilus torridus and Thermoplasma acidophilum, key enzymes of the non-phosphorylative Entner-Doudoroff pathway, constitute a novel enzyme family within the aldehyde dehydrogenase superfamily. Reher M; Schönheit P FEBS Lett; 2006 Feb; 580(5):1198-204. PubMed ID: 16458304 [TBL] [Abstract][Full Text] [Related]
13. Metabolism of L-fucose and L-rhamnose in Escherichia coli: aerobic-anaerobic regulation of L-lactaldehyde dissimilation. Baldomà L; Aguilar J J Bacteriol; 1988 Jan; 170(1):416-21. PubMed ID: 3275622 [TBL] [Abstract][Full Text] [Related]
14. Involvement of lactaldehyde dehydrogenase in several metabolic pathways of Escherichia coli K12. Baldomà L; Aguilar J J Biol Chem; 1987 Oct; 262(29):13991-6. PubMed ID: 3308886 [TBL] [Abstract][Full Text] [Related]
15. Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38. Johnson AR; Chen YW; Dekker EE Arch Biochem Biophys; 1998 Oct; 358(2):211-21. PubMed ID: 9784233 [TBL] [Abstract][Full Text] [Related]
16. Engineered glycolytic glyceraldehyde-3-phosphate dehydrogenase binds the anti conformation of NAD+ nicotinamide but does not experience A-specific hydride transfer. Eyschen J; Vitoux B; Marraud M; Cung MT; Branlant G Arch Biochem Biophys; 1999 Apr; 364(2):219-27. PubMed ID: 10190977 [TBL] [Abstract][Full Text] [Related]
17. Protein engineering of a thermostable polyol dehydrogenase. Wulf H; Mallin H; Bornscheuer UT Enzyme Microb Technol; 2012 Sep; 51(4):217-24. PubMed ID: 22883556 [TBL] [Abstract][Full Text] [Related]
18. Involvement of cysteine 289 in the catalytic activity of an NADP(+)-specific fatty aldehyde dehydrogenase from Vibrio harveyi. Vedadi M; Szittner R; Smillie L; Meighen E Biochemistry; 1995 Dec; 34(51):16725-32. PubMed ID: 8527447 [TBL] [Abstract][Full Text] [Related]
19. Apo and holo crystal structures of an NADP-dependent aldehyde dehydrogenase from Streptococcus mutans. Cobessi D; Tête-Favier F; Marchal S; Azza S; Branlant G; Aubry A J Mol Biol; 1999 Jul; 290(1):161-73. PubMed ID: 10388564 [TBL] [Abstract][Full Text] [Related]
20. Gene cloning, expression, and characterization of a novel acetaldehyde dehydrogenase from Issatchenkia terricola strain XJ-2. Yao Z; Zhang C; Lu F; Bie X; Lu Z Appl Microbiol Biotechnol; 2012 Mar; 93(5):1999-2009. PubMed ID: 21858493 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]