BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 27671251)

  • 61. Involvement of the gapA- and epd (gapB)-encoded dehydrogenases in pyridoxal 5'-phosphate coenzyme biosynthesis in Escherichia coli K-12.
    Yang Y; Zhao G; Man TK; Winkler ME
    J Bacteriol; 1998 Aug; 180(16):4294-9. PubMed ID: 9696782
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Crystal structure of a bifunctional aldolase-dehydrogenase: sequestering a reactive and volatile intermediate.
    Manjasetty BA; Powlowski J; Vrielink A
    Proc Natl Acad Sci U S A; 2003 Jun; 100(12):6992-7. PubMed ID: 12764229
    [TBL] [Abstract][Full Text] [Related]  

  • 63. NAD-linked aldehyde dehydrogenase for aerobic utilization of L-fucose and L-rhamnose by Escherichia coli.
    Chen YM; Zhu Y; Lin EC
    J Bacteriol; 1987 Jul; 169(7):3289-94. PubMed ID: 3298215
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Development of a Highly Selective NAD
    Teshima M; Sutiono S; Döring M; Beer B; Boden M; Schenk G; Sieber V
    ChemSusChem; 2024 Feb; 17(4):e202301132. PubMed ID: 37872118
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Study of the structure-function relationship of formate dehydrogenase- an important enzyme for Staphylococcus aureus biofilms by rational design.
    Iurchenko TS; Bolotova SB; Loginova AA; Kargov IS; Atroshenko DL; Savin SS; Pometun EV; Tishkov VI; Pometun AA
    Biochimie; 2024 Jan; 216():194-204. PubMed ID: 37925050
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Evolutionary, computational, and biochemical studies of the salicylaldehyde dehydrogenases in the naphthalene degradation pathway.
    Jia B; Jia X; Hyun Kim K; Ji Pu Z; Kang MS; Ok Jeon C
    Sci Rep; 2017 Feb; 7():43489. PubMed ID: 28233868
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Increased productivity of L-2-aminobutyric acid and total turnover number of NAD
    Wang Y; Li GS; Qiao P; Lin L; Xue HL; Zhu L; Wu MB; Lin JP; Yang LR
    Biotechnol Lett; 2018 Dec; 40(11-12):1551-1559. PubMed ID: 30259222
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Reengineering substrate specificity of E. coli glutamate dehydrogenase using a position-based prediction method.
    Geng F; Ma CW; Zeng AP
    Biotechnol Lett; 2017 Apr; 39(4):599-605. PubMed ID: 28185032
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Crystal structure of human aldehyde dehydrogenase 1A3 complexed with NAD
    Moretti A; Li J; Donini S; Sobol RW; Rizzi M; Garavaglia S
    Sci Rep; 2016 Oct; 6():35710. PubMed ID: 27759097
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A pathway for putrescine catabolism in Escherichia coli.
    Prieto-Santos MI; Martín-Checa J; Balaña-Fouce R; Garrido-Pertierra A
    Biochim Biophys Acta; 1986 Feb; 880(2-3):242-4. PubMed ID: 3510672
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Characterization of a uronate dehydrogenase from Thermobispora bispora for production of glucaric acid from hemicellulose substrate.
    Li Y; Xue Y; Cao Z; Zhou T; Alnadari F
    World J Microbiol Biotechnol; 2018 Jun; 34(7):102. PubMed ID: 29936649
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Evolution of propanediol utilization in Escherichia coli: mutant with improved substrate-scavenging power.
    Hacking AJ; Aguilar J; Lin EC
    J Bacteriol; 1978 Nov; 136(2):522-30. PubMed ID: 361712
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Properties of gamma-aminobutyraldehyde dehydrogenase from Escherichia coli.
    Prieto MI; Martin J; Balaña-Fouce R; Garrido-Pertierra A
    Biochimie; 1987; 69(11-12):1161-8. PubMed ID: 3129020
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Comparative analysis of two members of the metal ion-containing group III-alcohol dehydrogenases from Dickeya zeae.
    Elleuche S; Klippel B; von der Heyde A; Antranikian G
    Biotechnol Lett; 2013 May; 35(5):725-33. PubMed ID: 23362047
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Crystal structures and kinetic studies of a laboratory evolved aldehyde reductase explain the dramatic shift of its new substrate specificity.
    Sridhar S; Zavarise A; Kiema TR; Dalwani S; Eriksson T; Hajee Y; Reddy Enugala T; Wierenga RK; Widersten M
    IUCrJ; 2023 Jul; 10(Pt 4):437-447. PubMed ID: 37261425
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Glyceraldehyde 3-phosphate dehydrogenase mutants of Escherichia coli.
    Hillman JD; Fraenkel DG
    J Bacteriol; 1975 Jun; 122(3):1175-9. PubMed ID: 1097392
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Characterization of Aldehyde Dehydrogenases Applying an Enzyme Assay with In Situ Formation of Phenylacetaldehydes.
    Zimmerling J; Tischler D; Großmann C; Schlömann M; Oelschlägel M
    Appl Biochem Biotechnol; 2017 Jul; 182(3):1095-1107. PubMed ID: 28062952
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Construction of a synthetic metabolic pathway for biosynthesis of the non-natural methionine precursor 2,4-dihydroxybutyric acid.
    Walther T; Topham CM; Irague R; Auriol C; Baylac A; Cordier H; Dressaire C; Lozano-Huguet L; Tarrat N; Martineau N; Stodel M; Malbert Y; Maestracci M; Huet R; André I; Remaud-Siméon M; François JM
    Nat Commun; 2017 Jun; 8():15828. PubMed ID: 28631755
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Targeting NAD-dependent dehydrogenases in drug discovery against infectious diseases and cancer.
    Ferraris DM; Gelardi ELM; Garavaglia S; Miggiano R; Rizzi M
    Biochem Soc Trans; 2020 Apr; 48(2):693-707. PubMed ID: 32311017
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Mutations of human class III alcohol dehydrogenase.
    Estonius M; Höög JO; Danielsson O; Jörnvall H
    Adv Exp Med Biol; 1995; 372():327-30. PubMed ID: 7484394
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.