These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 27671626)

  • 21. Hierarchically arranged helical fibre actuators driven by solvents and vapours.
    Chen P; Xu Y; He S; Sun X; Pan S; Deng J; Chen D; Peng H
    Nat Nanotechnol; 2015 Dec; 10(12):1077-83. PubMed ID: 26367106
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dual-Responsive MXene-Functionalized Wool Yarn Artificial Muscles.
    Zhan L; Chen S; Xin Y; Lv J; Fu H; Gao D; Jiang F; Zhou X; Wang N; Lee PS
    Adv Sci (Weinh); 2024 Jul; 11(25):e2402196. PubMed ID: 38650164
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cavatappi artificial muscles from drawing, twisting, and coiling polymer tubes.
    Higueras-Ruiz DR; Shafer MW; Feigenbaum HP
    Sci Robot; 2021 Apr; 6(53):. PubMed ID: 34043560
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plant-Like Tropisms in Artificial Muscles.
    Aziz S; Zhang X; Naficy S; Salahuddin B; Jager EWH; Zhu Z
    Adv Mater; 2023 Dec; 35(51):e2212046. PubMed ID: 36965152
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dual high-stroke and high-work capacity artificial muscles inspired by DNA supercoiling.
    Spinks GM; Martino ND; Naficy S; Shepherd DJ; Foroughi J
    Sci Robot; 2021 Apr; 6(53):. PubMed ID: 34043569
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fast Torsional Artificial Muscles from NiTi Twisted Yarns.
    Mirvakili SM; Hunter IW
    ACS Appl Mater Interfaces; 2017 May; 9(19):16321-16326. PubMed ID: 28447459
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Large-Deformation Curling Actuators Based on Carbon Nanotube Composite: Advanced-Structure Design and Biomimetic Application.
    Chen L; Weng M; Zhou Z; Zhou Y; Zhang L; Li J; Huang Z; Zhang W; Liu C; Fan S
    ACS Nano; 2015 Dec; 9(12):12189-96. PubMed ID: 26512734
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preparation of biomimetic hierarchically helical fiber actuators from carbon nanotubes.
    Deng J; Xu Y; He S; Chen P; Bao L; Hu Y; Wang B; Sun X; Peng H
    Nat Protoc; 2017 Jul; 12(7):1349-1358. PubMed ID: 28594815
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Giant-stroke, superelastic carbon nanotube aerogel muscles.
    Aliev AE; Oh J; Kozlov ME; Kuznetsov AA; Fang S; Fonseca AF; Ovalle R; Lima MD; Haque MH; Gartstein YN; Zhang M; Zakhidov AA; Baughman RH
    Science; 2009 Mar; 323(5921):1575-8. PubMed ID: 19299612
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Shape-Memory Polymeric Artificial Muscles: Mechanisms, Applications and Challenges.
    Chen Y; Chen C; Rehman HU; Zheng X; Li H; Liu H; Hedenqvist MS
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32947872
    [TBL] [Abstract][Full Text] [Related]  

  • 32. All-solid-state carbon nanotube torsional and tensile artificial muscles.
    Lee JA; Kim YT; Spinks GM; Suh D; Lepró X; Lima MD; Baughman RH; Kim SJ
    Nano Lett; 2014 May; 14(5):2664-9. PubMed ID: 24742031
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polymeric materials as artificial muscles: an overview.
    Ariano P; Accardo D; Lombardi M; Bocchini S; Draghi L; De Nardo L; Fino P
    J Appl Biomater Funct Mater; 2015 Mar; 13(1):1-9. PubMed ID: 24700263
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Testing of Coiled Nylon Actuators for Use in Spastic Hand Exoskeletons.
    Bahrami S; Dumond P
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1853-1856. PubMed ID: 30440757
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Realizing the potential of dielectric elastomer artificial muscles.
    Duduta M; Hajiesmaili E; Zhao H; Wood RJ; Clarke DR
    Proc Natl Acad Sci U S A; 2019 Feb; 116(7):2476-2481. PubMed ID: 30679271
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tethering of twisted-fiber artificial muscles.
    Leng X; Mei G; Zhang G; Liu Z; Zhou X
    Chem Soc Rev; 2023 Apr; 52(7):2377-2390. PubMed ID: 36919405
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Torsional carbon nanotube artificial muscles.
    Foroughi J; Spinks GM; Wallace GG; Oh J; Kozlov ME; Fang S; Mirfakhrai T; Madden JD; Shin MK; Kim SJ; Baughman RH
    Science; 2011 Oct; 334(6055):494-7. PubMed ID: 21998253
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydro-actuation of hybrid carbon nanotube yarn muscles.
    Gu X; Fan Q; Yang F; Cai L; Zhang N; Zhou W; Zhou W; Xie S
    Nanoscale; 2016 Oct; 8(41):17881-17886. PubMed ID: 27714203
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pretension-Free and Self-Recoverable Coiled Artificial Muscle Fibers with Powerful Cyclic Work Capability.
    Cui B; Ren M; Dong L; Wang Y; He J; Wei X; Zhao Y; Xu P; Wang X; Di J; Li Q
    ACS Nano; 2023 Jul; 17(13):12809-12819. PubMed ID: 37338135
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Moisture-Sensitive Response and High-Reliable Cycle Recovery Effectiveness of Yarn-Based Actuators with Tether-Free, Multi-Hierarchical Hybrid Construction.
    Wu J; Yang M; Sheng N; Peng Y; Sun F; Han C
    ACS Appl Mater Interfaces; 2022 Nov; 14(47):53274-53284. PubMed ID: 36379058
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.