BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 27671652)

  • 21. Why coelacanths are not 'living fossils': a review of molecular and morphological data.
    Casane D; Laurenti P
    Bioessays; 2013 Apr; 35(4):332-8. PubMed ID: 23382020
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An evaluation of fossil tip-dating versus node-age calibrations in tetraodontiform fishes (Teleostei: Percomorphaceae).
    Arcila D; Alexander Pyron R; Tyler JC; Ortí G; Betancur-R R
    Mol Phylogenet Evol; 2015 Jan; 82 Pt A():131-45. PubMed ID: 25462998
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative genomics of ParaHox clusters of teleost fishes: gene cluster breakup and the retention of gene sets following whole genome duplications.
    Siegel N; Hoegg S; Salzburger W; Braasch I; Meyer A
    BMC Genomics; 2007 Sep; 8():312. PubMed ID: 17822543
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Was Gondwanan breakup the cause of the intercontinental distribution of Osteoglossiformes? A time-calibrated phylogenetic test combining molecular, morphological, and paleontological evidence.
    Lavoué S
    Mol Phylogenet Evol; 2016 Jun; 99():34-43. PubMed ID: 26979263
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Divergent Genomes of Teleosts.
    Ravi V; Venkatesh B
    Annu Rev Anim Biosci; 2018 Feb; 6():47-68. PubMed ID: 29447475
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Permian-Triassic Osteichthyes (bony fishes): diversity dynamics and body size evolution.
    Romano C; Koot MB; Kogan I; Brayard A; Minikh AV; Brinkmann W; Bucher H; Kriwet J
    Biol Rev Camb Philos Soc; 2016 Feb; 91(1):106-47. PubMed ID: 25431138
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identifying heterogeneity in rates of morphological evolution: discrete character change in the evolution of lungfish (Sarcopterygii; Dipnoi).
    Lloyd GT; Wang SC; Brusatte SL
    Evolution; 2012 Feb; 66(2):330-48. PubMed ID: 22276532
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling lineage and phenotypic diversification in the New World monkey (Platyrrhini, Primates) radiation.
    Aristide L; Rosenberger AL; Tejedor MF; Perez SI
    Mol Phylogenet Evol; 2015 Jan; 82 Pt B():375-85. PubMed ID: 24287474
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expansion by whole genome duplication and evolution of the sox gene family in teleost fish.
    Voldoire E; Brunet F; Naville M; Volff JN; Galiana D
    PLoS One; 2017; 12(7):e0180936. PubMed ID: 28738066
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Whole-genome duplication in teleost fishes and its evolutionary consequences.
    Glasauer SM; Neuhauss SC
    Mol Genet Genomics; 2014 Dec; 289(6):1045-60. PubMed ID: 25092473
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vertebrate vitellogenin gene duplication in relation to the "3R hypothesis": correlation to the pelagic egg and the oceanic radiation of teleosts.
    Finn RN; Kristoffersen BA
    PLoS One; 2007 Jan; 2(1):e169. PubMed ID: 17245445
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Explosive morphological diversification of spiny-finned teleost fishes in the aftermath of the end-Cretaceous extinction.
    Friedman M
    Proc Biol Sci; 2010 Jun; 277(1688):1675-83. PubMed ID: 20133356
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biogeography in deep time - What do phylogenetics, geology, and paleoclimate tell us about early platyrrhine evolution?
    Kay RF
    Mol Phylogenet Evol; 2015 Jan; 82 Pt B():358-74. PubMed ID: 24333920
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data.
    Hughes LC; Ortí G; Huang Y; Sun Y; Baldwin CC; Thompson AW; Arcila D; Betancur-R R; Li C; Becker L; Bellora N; Zhao X; Li X; Wang M; Fang C; Xie B; Zhou Z; Huang H; Chen S; Venkatesh B; Shi Q
    Proc Natl Acad Sci U S A; 2018 Jun; 115(24):6249-6254. PubMed ID: 29760103
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome structures resolve the early diversification of teleost fishes.
    Parey E; Louis A; Montfort J; Bouchez O; Roques C; Iampietro C; Lluch J; Castinel A; Donnadieu C; Desvignes T; Floi Bucao C; Jouanno E; Wen M; Mejri S; Dirks R; Jansen H; Henkel C; Chen WJ; Zahm M; Cabau C; Klopp C; Thompson AW; Robinson-Rechavi M; Braasch I; Lecointre G; Bobe J; Postlethwait JH; Berthelot C; Roest Crollius H; Guiguen Y
    Science; 2023 Feb; 379(6632):572-575. PubMed ID: 36758078
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A molecular phylogeny of nephilid spiders: evolutionary history of a model lineage.
    Kuntner M; Arnedo MA; Trontelj P; Lokovšek T; Agnarsson I
    Mol Phylogenet Evol; 2013 Dec; 69(3):961-79. PubMed ID: 23811436
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Directional divergence of Ep300 duplicates in teleosts and its implications.
    Wang X; Yan J
    BMC Evol Biol; 2020 Oct; 20(1):140. PubMed ID: 33129255
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The "fish-specific" Hox cluster duplication is coincident with the origin of teleosts.
    Crow KD; Stadler PF; Lynch VJ; Amemiya C; Wagner GP
    Mol Biol Evol; 2006 Jan; 23(1):121-36. PubMed ID: 16162861
    [TBL] [Abstract][Full Text] [Related]  

  • 39. From 2R to 3R: evidence for a fish-specific genome duplication (FSGD).
    Meyer A; Van de Peer Y
    Bioessays; 2005 Sep; 27(9):937-45. PubMed ID: 16108068
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Extant-only comparative methods fail to recover the disparity preserved in the bird fossil record.
    Mitchell JS
    Evolution; 2015 Sep; 69(9):2414-24. PubMed ID: 26257156
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.