BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

640 related articles for article (PubMed ID: 27671809)

  • 21. Production and consumption of hydrogen in hot spring microbial mats dominated by a filamentous anoxygenic photosynthetic bacterium.
    Otaki H; Everroad RC; Matsuura K; Haruta S
    Microbes Environ; 2012; 27(3):293-9. PubMed ID: 22446313
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Associations between redox-sensitive trace metals and microbial communities in a Proterozoic ocean analogue.
    Rico KI; Sheldon ND; Kinsman-Costello LE
    Geobiology; 2020 Jul; 18(4):462-475. PubMed ID: 32181592
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Use of pyrosequencing to explore the benthic bacterial community structure in a river impacted by wastewater treatment plant discharges.
    Marti E; Balcázar JL
    Res Microbiol; 2014; 165(6):468-71. PubMed ID: 24732342
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The phylogenetic diversity of Thermus and Meiothermus from microbial mats of an Australian subsurface aquifer runoff channel.
    Spanevello MD; Patel BK
    FEMS Microbiol Ecol; 2004 Oct; 50(1):63-73. PubMed ID: 19712377
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bacterial Diversity in Microbial Mats and Sediments from the Atacama Desert.
    Rasuk MC; Fernández AB; Kurth D; Contreras M; Novoa F; Poiré D; Farías ME
    Microb Ecol; 2016 Jan; 71(1):44-56. PubMed ID: 26224164
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Marine Subsurface Microbial Community Shifts Across a Hydrothermal Gradient in Okinawa Trough Sediments.
    Brandt LD; House CH
    Archaea; 2016; 2016():2690329. PubMed ID: 28096736
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Seasonal shifts in community composition and proteome expression in a sulphur-cycling cyanobacterial mat.
    Grim SL; Stuart DG; Aron P; Levin NE; Kinsman-Costello L; Waldbauer JR; Dick GJ
    Environ Microbiol; 2023 Nov; 25(11):2516-2533. PubMed ID: 37596970
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microbiological and geochemical heterogeneity in an in situ uranium bioremediation field site.
    Vrionis HA; Anderson RT; Ortiz-Bernad I; O'Neill KR; Resch CT; Peacock AD; Dayvault R; White DC; Long PE; Lovley DR
    Appl Environ Microbiol; 2005 Oct; 71(10):6308-18. PubMed ID: 16204552
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel acsF Gene Primers Revealed a Diverse Phototrophic Bacterial Population, Including Gemmatimonadetes, in Lake Taihu (China).
    Huang Y; Zeng Y; Lu H; Feng H; Zeng Y; Koblížek M
    Appl Environ Microbiol; 2016 Sep; 82(18):5587-94. PubMed ID: 27401973
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microbial diversity in sediments of saline Qinghai Lake, China: linking geochemical controls to microbial ecology.
    Dong H; Zhang G; Jiang H; Yu B; Chapman LR; Lucas CR; Fields MW
    Microb Ecol; 2006 Jan; 51(1):65-82. PubMed ID: 16400537
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Depth Distribution and Assembly of Sulfate-Reducing Microbial Communities in Marine Sediments of Aarhus Bay.
    Jochum LM; Chen X; Lever MA; Loy A; Jørgensen BB; Schramm A; Kjeldsen KU
    Appl Environ Microbiol; 2017 Dec; 83(23):. PubMed ID: 28939599
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sedimentary DNA Reveals Cyanobacterial Community Diversity over 200 Years in Two Perialpine Lakes.
    Monchamp ME; Walser JC; Pomati F; Spaak P
    Appl Environ Microbiol; 2016 Nov; 82(21):6472-6482. PubMed ID: 27565621
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bacterial abundance and composition in marine sediments beneath the Ross Ice Shelf, Antarctica.
    Carr SA; Vogel SW; Dunbar RB; Brandes J; Spear JR; Levy R; Naish TR; Powell RD; Wakeham SG; Mandernack KW
    Geobiology; 2013 Jul; 11(4):377-95. PubMed ID: 23682649
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Depth-related changes of sediment ammonia-oxidizing microorganisms in a high-altitude freshwater wetland.
    Liu Y; Zhang J; Zhang X; Xie S
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5697-707. PubMed ID: 24619246
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microbial community composition in alpine lake sediments from the Hengduan Mountains.
    Liao B; Yan X; Zhang J; Chen M; Li Y; Huang J; Lei M; He H; Wang J
    Microbiologyopen; 2019 Sep; 8(9):e00832. PubMed ID: 30848090
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatial and Temporal Constraints on the Composition of Microbial Communities in Subsurface Boreholes of the Edgar Experimental Mine.
    Thieringer PH; Honeyman AS; Spear JR
    Microbiol Spectr; 2021 Dec; 9(3):e0063121. PubMed ID: 34756066
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatial structure and activity of sedimentary microbial communities underlying a Beggiatoa spp. mat in a Gulf of Mexico hydrocarbon seep.
    Lloyd KG; Albert DB; Biddle JF; Chanton JP; Pizarro O; Teske A
    PLoS One; 2010 Jan; 5(1):e8738. PubMed ID: 20090951
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison among the microbial communities in the lake, lake wetland, and estuary sediments of a plain river network.
    Huang W; Chen X; Wang K; Chen J; Zheng B; Jiang X
    Microbiologyopen; 2019 Feb; 8(2):e00644. PubMed ID: 29888529
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Close association of active nitrifiers with Beggiatoa mats covering deep-sea hydrothermal sediments.
    Winkel M; de Beer D; Lavik G; Peplies J; Mußmann M
    Environ Microbiol; 2014 Jun; 16(6):1612-26. PubMed ID: 24286252
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Limitation of Microbial Processes at Saturation-Level Salinities in a Microbial Mat Covering a Coastal Salt Flat.
    Meier DV; Greve AJ; Chennu A; van Erk MR; Muthukrishnan T; Abed RMM; Woebken D; de Beer D
    Appl Environ Microbiol; 2021 Aug; 87(17):e0069821. PubMed ID: 34160273
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.