BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 27672035)

  • 1. Global tRNA misacylation induced by anaerobiosis and antibiotic exposure broadly increases stress resistance in Escherichia coli.
    Schwartz MH; Waldbauer JR; Zhang L; Pan T
    Nucleic Acids Res; 2016 Dec; 44(21):10292-10303. PubMed ID: 27672035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Misacylation of tRNA with methionine in Saccharomyces cerevisiae.
    Wiltrout E; Goodenbour JM; Fréchin M; Pan T
    Nucleic Acids Res; 2012 Nov; 40(20):10494-506. PubMed ID: 22941646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Misacylation of specific nonmethionyl tRNAs by a bacterial methionyl-tRNA synthetase.
    Jones TE; Alexander RW; Pan T
    Proc Natl Acad Sci U S A; 2011 Apr; 108(17):6933-8. PubMed ID: 21482813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. tRNA Misacylation with Methionine in the Mouse Gut Microbiome in Situ.
    Schwartz MH; Pan T
    Microb Ecol; 2017 Jul; 74(1):10-14. PubMed ID: 28070678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of methionine and formylation of initiator tRNA in initiation of protein synthesis in Escherichia coli.
    Varshney U; RajBhandary UL
    J Bacteriol; 1992 Dec; 174(23):7819-26. PubMed ID: 1447148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature dependent mistranslation in a hyperthermophile adapts proteins to lower temperatures.
    Schwartz MH; Pan T
    Nucleic Acids Res; 2016 Jan; 44(1):294-303. PubMed ID: 26657639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Promiscuous methionyl-tRNA synthetase mediates adaptive mistranslation to protect cells against oxidative stress.
    Lee JY; Kim DG; Kim BG; Yang WS; Hong J; Kang T; Oh YS; Kim KR; Han BW; Hwang BJ; Kang BS; Kang MS; Kim MH; Kwon NH; Kim S
    J Cell Sci; 2014 Oct; 127(Pt 19):4234-45. PubMed ID: 25097229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preferential charging of tRNA-Met-f in Escherichia coli K12.
    Ron EZ; Falk A; Helberg D; Horowitz S; Zeevi M
    Eur J Biochem; 1978 Dec; 92(2):389-95. PubMed ID: 216545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Covalent methionylation of Escherichia coli methionyl-tRNA synthethase: identification of the labeled amino acid residues by matrix-assisted laser desorption-ionization mass spectrometry.
    Gillet S; Hountondji C; Schmitter JM; Blanquet S
    Protein Sci; 1997 Nov; 6(11):2426-35. PubMed ID: 9385645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy cost of proofreading in vivo: the charging of methionine tRNAs in Escherichia coli.
    Jakubowski H
    FASEB J; 1993 Jan; 7(1):168-72. PubMed ID: 8422964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A dual fluorescent reporter for the investigation of methionine mistranslation in live cells.
    Gomes AC; Kordala AJ; Strack R; Wang X; Geslain R; Delaney K; Clark WC; Keenan R; Pan T
    RNA; 2016 Mar; 22(3):467-76. PubMed ID: 26729921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and function of the C-terminal domain of methionyl-tRNA synthetase.
    Crepin T; Schmitt E; Blanquet S; Mechulam Y
    Biochemistry; 2002 Oct; 41(43):13003-11. PubMed ID: 12390027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charging levels of four tRNA species in Escherichia coli Rel(+) and Rel(-) strains during amino acid starvation: a simple model for the effect of ppGpp on translational accuracy.
    Sørensen MA
    J Mol Biol; 2001 Mar; 307(3):785-98. PubMed ID: 11273701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yeast cytoplasmic and mitochondrial methionyl-tRNA synthetases: two structural frameworks for identical functions.
    Senger B; Despons L; Walter P; Jakubowski H; Fasiolo F
    J Mol Biol; 2001 Aug; 311(1):205-16. PubMed ID: 11469869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study of communication pathways in methionyl- tRNA synthetase by molecular dynamics simulations and structure network analysis.
    Ghosh A; Vishveshwara S
    Proc Natl Acad Sci U S A; 2007 Oct; 104(40):15711-6. PubMed ID: 17898174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selectivity and specificity of substrate binding in methionyl-tRNA synthetase.
    Datta D; Vaidehi N; Zhang D; Goddard WA
    Protein Sci; 2004 Oct; 13(10):2693-705. PubMed ID: 15388861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methionyl-tRNA synthetase from E. coli--a review.
    Meinnel T; Mechulam Y; Dardel F; Schmitter JM; Hountondji C; Brunie S; Dessen P; Fayat G; Blanquet S
    Biochimie; 1990 Aug; 72(8):625-32. PubMed ID: 2126467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two acidic residues of Escherichia coli methionyl-tRNA synthetase act as negative discriminants towards the binding of non-cognate tRNA anticodons.
    Schmitt E; Meinnel T; Panvert M; Mechulam Y; Blanquet S
    J Mol Biol; 1993 Oct; 233(4):615-28. PubMed ID: 8411169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recognition of tRNAs by aminoacyl-tRNA synthetases: Escherichia coli tRNAMet and E. coli methionyl-tRNA synthetase.
    Schulman LH; Pelka H
    Fed Proc; 1984 Dec; 43(15):2977-80. PubMed ID: 6389181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of a domain-spanning disulfide on aminoacyl-tRNA synthetase activity.
    Banerjee P; Warf MB; Alexander R
    Biochemistry; 2009 Oct; 48(42):10113-9. PubMed ID: 19772352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.