BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 27672049)

  • 1. In vitro evolution of phi29 DNA polymerase using isothermal compartmentalized self replication technique.
    Povilaitis T; Alzbutas G; Sukackaite R; Siurkus J; Skirgaila R
    Protein Eng Des Sel; 2016 Dec; 29(12):617-628. PubMed ID: 27672049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro evolution of phi29 DNA polymerases through compartmentalized gene expression and rolling-circle replication.
    Sakatani Y; Mizuuchi R; Ichihashi N
    Protein Eng Des Sel; 2019 Dec; 32(11):481-487. PubMed ID: 32533140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Whole-genome amplification using Φ29 DNA polymerase.
    Burtt NP
    Cold Spring Harb Protoc; 2011 Jan; 2011(1):pdb.prot5552. PubMed ID: 21205852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of φ29 DNA polymerase amplification performance by fusion of DNA binding motifs.
    de Vega M; Lázaro JM; Mencía M; Blanco L; Salas M
    Proc Natl Acad Sci U S A; 2010 Sep; 107(38):16506-11. PubMed ID: 20823261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of a Thermophilic Strand-Displacing Polymerase Using High-Temperature Isothermal Compartmentalized Self-Replication.
    Milligan JN; Shroff R; Garry DJ; Ellington AD
    Biochemistry; 2018 Aug; 57(31):4607-4619. PubMed ID: 29629759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isothermal multiple displacement amplification of DNA templates in minimally buffered conditions using phi29 polymerase.
    Tenaglia E; Imaizumi Y; Miyahara Y; Guiducci C
    Chem Commun (Camb); 2018 Feb; 54(17):2158-2161. PubMed ID: 29431761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Usefulness of repeated GenomiPhi, a phi29 DNA polymerase-based rolling circle amplification kit, for generation of large amounts of plasmid DNA.
    Sato M; Ohtsuka M; Ohmi Y
    Biomol Eng; 2005 Oct; 22(4):129-32. PubMed ID: 16023891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TempliPhi, phi29 DNA polymerase based rolling circle amplification of templates for DNA sequencing.
    Nelson JR; Cai YC; Giesler TL; Farchaus JW; Sundaram ST; Ortiz-Rivera M; Hosta LP; Hewitt PL; Mamone JA; Palaniappan C; Fuller CW
    Biotechniques; 2002 Jun; Suppl():44-7. PubMed ID: 12083397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phi29 polymerase based random amplification of viral RNA as an alternative to random RT-PCR.
    Berthet N; Reinhardt AK; Leclercq I; van Ooyen S; Batéjat C; Dickinson P; Stamboliyska R; Old IG; Kong KA; Dacheux L; Bourhy H; Kennedy GC; Korfhage C; Cole ST; Manuguerra JC
    BMC Mol Biol; 2008 Sep; 9():77. PubMed ID: 18771595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-free cloning using phi29 DNA polymerase.
    Hutchison CA; Smith HO; Pfannkoch C; Venter JC
    Proc Natl Acad Sci U S A; 2005 Nov; 102(48):17332-6. PubMed ID: 16286637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compartmentalized Self-Replication for Evolution of a DNA Polymerase.
    Abil Z; Ellington AD
    Curr Protoc Chem Biol; 2018 Mar; 10(1):1-17. PubMed ID: 30040233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification.
    Dean FB; Nelson JR; Giesler TL; Lasken RS
    Genome Res; 2001 Jun; 11(6):1095-9. PubMed ID: 11381035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. phi29 DNA polymerase residue Phe128 of the highly conserved (S/T)Lx(2)h motif is required for a stable and functional interaction with the terminal protein.
    Rodríguez I; Lázaro JM; Salas M; de Vega M
    J Mol Biol; 2003 Jan; 325(1):85-97. PubMed ID: 12473453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two positively charged residues of phi29 DNA polymerase, conserved in protein-primed DNA polymerases, are involved in stabilisation of the incoming nucleotide.
    Truniger V; Lázaro JM; Salas M
    J Mol Biol; 2004 Jan; 335(2):481-94. PubMed ID: 14672657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal DNA templates for rolling circle amplification revealed by in vitro selection.
    Mao Y; Liu M; Tram K; Gu J; Salena BJ; Jiang Y; Li Y
    Chemistry; 2015 May; 21(22):8069-74. PubMed ID: 25877998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Whole-metagenome amplification of a microbial community associated with scleractinian coral by multiple displacement amplification using phi29 polymerase.
    Yokouchi H; Fukuoka Y; Mukoyama D; Calugay R; Takeyama H; Matsunaga T
    Environ Microbiol; 2006 Jul; 8(7):1155-63. PubMed ID: 16817924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repeated GenomiPhi, phi29 DNA polymerase-based rolling circle amplification, is useful for generation of large amounts of plasmid DNA.
    Sato M; Ohtsuka M; Ohmi Y
    Nucleic Acids Symp Ser (Oxf); 2004; (48):147-8. PubMed ID: 17150521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A highly conserved lysine residue in phi29 DNA polymerase is important for correct binding of the templating nucleotide during initiation of phi29 DNA replication.
    Truniger V; Lázaro JM; Blanco L; Salas M
    J Mol Biol; 2002 Apr; 318(1):83-96. PubMed ID: 12054770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compartmentalized self-replication (CSR) selection of Thermococcus litoralis Sh1B DNA polymerase for diminished uracil binding.
    Tubeleviciute A; Skirgaila R
    Protein Eng Des Sel; 2010 Aug; 23(8):589-97. PubMed ID: 20513707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA Polymerases for Whole Genome Amplification: Considerations and Future Directions.
    Ordóñez CD; Redrejo-Rodríguez M
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.