These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 27672518)

  • 1. Small unmanned aerial vehicles (micro-UAVs, drones) in plant ecology.
    Cruzan MB; Weinstein BG; Grasty MR; Kohrn BF; Hendrickson EC; Arredondo TM; Thompson PG
    Appl Plant Sci; 2016 Sep; 4(9):. PubMed ID: 27672518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unmanned aerial vehicles for surveying marine fauna: assessing detection probability.
    Hodgson A; Peel D; Kelly N
    Ecol Appl; 2017 Jun; 27(4):1253-1267. PubMed ID: 28178755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis on security-related concerns of unmanned aerial vehicle: attacks, limitations, and recommendations.
    Siddiqi MA; Iwendi C; Jaroslava K; Anumbe N
    Math Biosci Eng; 2022 Jan; 19(3):2641-2670. PubMed ID: 35240800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping out bare-nosed wombat (Vombatus ursinus) burrows with the use of a drone.
    Old JM; Lin SH; Franklin MJM
    BMC Ecol; 2019 Sep; 19(1):39. PubMed ID: 31533684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth Monitoring and Yield Estimation of Maize Plant Using Unmanned Aerial Vehicle (UAV) in a Hilly Region.
    Sapkota S; Paudyal DR
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted Applications of Unmanned Aerial Vehicles (Drones) in Telemedicine.
    Bhatt K; Pourmand A; Sikka N
    Telemed J E Health; 2018 Nov; 24(11):833-838. PubMed ID: 29489441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Unmanned Aerial Vehicles in Postfire Vegetation Survey Campaigns through Large and Heterogeneous Areas: Opportunities and Challenges.
    Fernández-Guisuraga JM; Sanz-Ablanedo E; Suárez-Seoane S; Calvo L
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29443914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Operational and Financial Considerations of Using Drones for Medical Support of Mass Events in Poland.
    Robakowska M; Ślęzak D; Tyrańska-Fobke A; Nowak J; Robakowski P; Żuratyński P; Ładny J; Nadolny K
    Disaster Med Public Health Prep; 2019 Jun; 13(3):527-532. PubMed ID: 30404675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved Accuracy of High-Throughput Phenotyping From Unmanned Aerial Systems by Extracting Traits Directly From Orthorectified Images.
    Wang X; Silva P; Bello NM; Singh D; Evers B; Mondal S; Espinosa FP; Singh RP; Poland J
    Front Plant Sci; 2020; 11():587093. PubMed ID: 33193537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. U-Space and UTM Deployment as an Opportunity for More Complex UAV Operations Including UAV Medical Transport.
    Kotlinski M; Calkowska JK
    J Intell Robot Syst; 2022; 106(1):12. PubMed ID: 36039343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unmanned aerial vehicles (UAVs) for surveying marine fauna: a dugong case study.
    Hodgson A; Kelly N; Peel D
    PLoS One; 2013; 8(11):e79556. PubMed ID: 24223967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Use of Very-High-Resolution Aerial Imagery to Estimate the Structure and Distribution of the
    Abdullah MM; Al-Ali ZM; Abdullah MT; Al-Anzi B
    Plants (Basel); 2021 May; 10(5):. PubMed ID: 34068447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unmanned aerial vehicles for biodiversity-friendly agricultural landscapes - A systematic review.
    Librán-Embid F; Klaus F; Tscharntke T; Grass I
    Sci Total Environ; 2020 Aug; 732():139204. PubMed ID: 32438190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dataset of 3D computer models of Late Miocene Mount Messenger Formation outcrops in New Zealand, built with UAV drones.
    Kamaruzaman EH; La Croix AD; Kamp PJJ
    Data Brief; 2024 Feb; 52():110035. PubMed ID: 38293575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can drones count gulls? Minimal disturbance and semiautomated image processing with an unmanned aerial vehicle for colony-nesting seabirds.
    Rush GP; Clarke LE; Stone M; Wood MJ
    Ecol Evol; 2018 Dec; 8(24):12322-12334. PubMed ID: 30619548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using unmanned aerial systems and deep learning for agriculture mapping in Dubai.
    El Hoummaidi L; Larabi A; Alam K
    Heliyon; 2021 Oct; 7(10):e08154. PubMed ID: 34703924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: disturbance effects and species recognition.
    McEvoy JF; Hall GP; McDonald PG
    PeerJ; 2016; 4():e1831. PubMed ID: 27020132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial Ecology of Estuarine Crocodile (Crocodylus porosus) Nesting in a Fragmented Landscape.
    Evans LJ; Jones TH; Pang K; Saimin S; Goossens B
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27657065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying and mapping individual medicinal plant Lamiophlomis rotata at high elevations by using unmanned aerial vehicles and deep learning.
    Ding R; Luo J; Wang C; Yu L; Yang J; Wang M; Zhong S; Gu R
    Plant Methods; 2023 Apr; 19(1):38. PubMed ID: 37005675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution semi-automatic mapping based on an Unmanned Aerial Vehicle (UAV) to capture geological structures.
    Moreira JA; Oliveira FB; Oliveira CHR; Figueiredo AC; Filho MCL; Duarte EB
    An Acad Bras Cienc; 2021; 93(3):e20191416. PubMed ID: 34161512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.