BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 27673320)

  • 1. Synaptic reliability and temporal precision are achieved via high quantal content and effective replenishment: auditory brainstem versus hippocampus.
    Krächan EG; Fischer AU; Franke J; Friauf E
    J Physiol; 2017 Feb; 595(3):839-864. PubMed ID: 27673320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Considerable differences between auditory medulla, auditory midbrain, and hippocampal synapses during sustained high-frequency stimulation: Exceptional vesicle replenishment restricted to sound localization circuit.
    Brill SE; Janz K; Singh A; Friauf E
    Hear Res; 2019 Sep; 381():107771. PubMed ID: 31394425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of synaptic fidelity and action potential robustness at an inhibitory sound localization circuit: effects of otoferlin-related deafness.
    Müller NIC; Paulußen I; Hofmann LN; Fisch JO; Singh A; Friauf E
    J Physiol; 2022 May; 600(10):2461-2497. PubMed ID: 35439328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibitory glycinergic neurotransmission in the mammalian auditory brainstem upon prolonged stimulation: short-term plasticity and synaptic reliability.
    Kramer F; Griesemer D; Bakker D; Brill S; Franke J; Frotscher E; Friauf E
    Front Neural Circuits; 2014; 8():14. PubMed ID: 24653676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological and functional continuum underlying heterogeneity in the spiking fidelity at the calyx of Held synapse in vitro.
    Grande G; Wang LY
    J Neurosci; 2011 Sep; 31(38):13386-99. PubMed ID: 21940432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycinergic Transmission in the Presence and Absence of Functional GlyT2: Lessons From the Auditory Brainstem.
    Brill SE; Maraslioglu A; Kurz C; Kramer F; Fuhr MF; Singh A; Friauf E
    Front Synaptic Neurosci; 2020; 12():560008. PubMed ID: 33633558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synaptic plasticity in the auditory system: a review.
    Friauf E; Fischer AU; Fuhr MF
    Cell Tissue Res; 2015 Jul; 361(1):177-213. PubMed ID: 25896885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maturation of synaptic transmission at end-bulb synapses of the cochlear nucleus.
    Brenowitz S; Trussell LO
    J Neurosci; 2001 Dec; 21(23):9487-98. PubMed ID: 11717383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A rapid form of activity-dependent recovery from short-term synaptic depression in the intensity pathway of the auditory brainstem.
    MacLeod KM; Horiuchi TK
    Biol Cybern; 2011 Mar; 104(3):209-23. PubMed ID: 21409439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast vesicle replenishment allows indefatigable signalling at the first auditory synapse.
    Griesinger CB; Richards CD; Ashmore JF
    Nature; 2005 May; 435(7039):212-5. PubMed ID: 15829919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The calyx of Held synapse: from model synapse to auditory relay.
    Borst JG; Soria van Hoeve J
    Annu Rev Physiol; 2012; 74():199-224. PubMed ID: 22035348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fine-tuning an auditory synapse for speed and fidelity: developmental changes in presynaptic waveform, EPSC kinetics, and synaptic plasticity.
    Taschenberger H; von Gersdorff H
    J Neurosci; 2000 Dec; 20(24):9162-73. PubMed ID: 11124994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of GluA3 AMPA Receptor Subunits in the Presynaptic and Postsynaptic Maturation of Synaptic Transmission and Plasticity of Endbulb-Bushy Cell Synapses in the Cochlear Nucleus.
    Antunes FM; Rubio ME; Kandler K
    J Neurosci; 2020 Mar; 40(12):2471-2484. PubMed ID: 32051325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantal transmission at Mauthner axon target synapses in the goldfish brainstem.
    Hackett JT; Cochran SL; Greenfield LJ
    Neuroscience; 1989; 32(1):49-64. PubMed ID: 2555736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneity of release probability, facilitation, and depletion at central synapses.
    Dobrunz LE; Stevens CF
    Neuron; 1997 Jun; 18(6):995-1008. PubMed ID: 9208866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ion channels and synapses responsible for the physiological diversity of mammalian lower brainstem auditory neurons.
    Leão RM
    Hear Res; 2019 May; 376():33-46. PubMed ID: 30606624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptic transmission at the endbulb of Held deteriorates during age-related hearing loss.
    Xie R; Manis PB
    J Physiol; 2017 Feb; 595(3):919-934. PubMed ID: 27618790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RIM-Binding Protein 2 Organizes Ca
    Butola T; Alvanos T; Hintze A; Koppensteiner P; Kleindienst D; Shigemoto R; Wichmann C; Moser T
    J Neurosci; 2021 Sep; 41(37):7742-7767. PubMed ID: 34353898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presynaptic Diversity Revealed by Ca
    Lujan B; Dagostin A; von Gersdorff H
    J Neurosci; 2019 Apr; 39(16):2981-2994. PubMed ID: 30679394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reliability and precision of the mouse calyx of Held synapse.
    Lorteije JA; Rusu SI; Kushmerick C; Borst JG
    J Neurosci; 2009 Nov; 29(44):13770-84. PubMed ID: 19889989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.