These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 27673320)

  • 1. Synaptic reliability and temporal precision are achieved via high quantal content and effective replenishment: auditory brainstem versus hippocampus.
    Krächan EG; Fischer AU; Franke J; Friauf E
    J Physiol; 2017 Feb; 595(3):839-864. PubMed ID: 27673320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Considerable differences between auditory medulla, auditory midbrain, and hippocampal synapses during sustained high-frequency stimulation: Exceptional vesicle replenishment restricted to sound localization circuit.
    Brill SE; Janz K; Singh A; Friauf E
    Hear Res; 2019 Sep; 381():107771. PubMed ID: 31394425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of synaptic fidelity and action potential robustness at an inhibitory sound localization circuit: effects of otoferlin-related deafness.
    Müller NIC; Paulußen I; Hofmann LN; Fisch JO; Singh A; Friauf E
    J Physiol; 2022 May; 600(10):2461-2497. PubMed ID: 35439328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibitory glycinergic neurotransmission in the mammalian auditory brainstem upon prolonged stimulation: short-term plasticity and synaptic reliability.
    Kramer F; Griesemer D; Bakker D; Brill S; Franke J; Frotscher E; Friauf E
    Front Neural Circuits; 2014; 8():14. PubMed ID: 24653676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological and functional continuum underlying heterogeneity in the spiking fidelity at the calyx of Held synapse in vitro.
    Grande G; Wang LY
    J Neurosci; 2011 Sep; 31(38):13386-99. PubMed ID: 21940432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycinergic Transmission in the Presence and Absence of Functional GlyT2: Lessons From the Auditory Brainstem.
    Brill SE; Maraslioglu A; Kurz C; Kramer F; Fuhr MF; Singh A; Friauf E
    Front Synaptic Neurosci; 2020; 12():560008. PubMed ID: 33633558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synaptic plasticity in the auditory system: a review.
    Friauf E; Fischer AU; Fuhr MF
    Cell Tissue Res; 2015 Jul; 361(1):177-213. PubMed ID: 25896885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maturation of synaptic transmission at end-bulb synapses of the cochlear nucleus.
    Brenowitz S; Trussell LO
    J Neurosci; 2001 Dec; 21(23):9487-98. PubMed ID: 11717383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A rapid form of activity-dependent recovery from short-term synaptic depression in the intensity pathway of the auditory brainstem.
    MacLeod KM; Horiuchi TK
    Biol Cybern; 2011 Mar; 104(3):209-23. PubMed ID: 21409439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast vesicle replenishment allows indefatigable signalling at the first auditory synapse.
    Griesinger CB; Richards CD; Ashmore JF
    Nature; 2005 May; 435(7039):212-5. PubMed ID: 15829919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The calyx of Held synapse: from model synapse to auditory relay.
    Borst JG; Soria van Hoeve J
    Annu Rev Physiol; 2012; 74():199-224. PubMed ID: 22035348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fine-tuning an auditory synapse for speed and fidelity: developmental changes in presynaptic waveform, EPSC kinetics, and synaptic plasticity.
    Taschenberger H; von Gersdorff H
    J Neurosci; 2000 Dec; 20(24):9162-73. PubMed ID: 11124994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of GluA3 AMPA Receptor Subunits in the Presynaptic and Postsynaptic Maturation of Synaptic Transmission and Plasticity of Endbulb-Bushy Cell Synapses in the Cochlear Nucleus.
    Antunes FM; Rubio ME; Kandler K
    J Neurosci; 2020 Mar; 40(12):2471-2484. PubMed ID: 32051325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantal transmission at Mauthner axon target synapses in the goldfish brainstem.
    Hackett JT; Cochran SL; Greenfield LJ
    Neuroscience; 1989; 32(1):49-64. PubMed ID: 2555736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneity of release probability, facilitation, and depletion at central synapses.
    Dobrunz LE; Stevens CF
    Neuron; 1997 Jun; 18(6):995-1008. PubMed ID: 9208866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ion channels and synapses responsible for the physiological diversity of mammalian lower brainstem auditory neurons.
    Leão RM
    Hear Res; 2019 May; 376():33-46. PubMed ID: 30606624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptic transmission at the endbulb of Held deteriorates during age-related hearing loss.
    Xie R; Manis PB
    J Physiol; 2017 Feb; 595(3):919-934. PubMed ID: 27618790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RIM-Binding Protein 2 Organizes Ca
    Butola T; Alvanos T; Hintze A; Koppensteiner P; Kleindienst D; Shigemoto R; Wichmann C; Moser T
    J Neurosci; 2021 Sep; 41(37):7742-7767. PubMed ID: 34353898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reliability and precision of the mouse calyx of Held synapse.
    Lorteije JA; Rusu SI; Kushmerick C; Borst JG
    J Neurosci; 2009 Nov; 29(44):13770-84. PubMed ID: 19889989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two voltage-dependent K+ conductances with complementary functions in postsynaptic integration at a central auditory synapse.
    Brew HM; Forsythe ID
    J Neurosci; 1995 Dec; 15(12):8011-22. PubMed ID: 8613738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.