These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 27673569)

  • 1. Supraspinal Control Predicts Locomotor Function and Forecasts Responsiveness to Training after Spinal Cord Injury.
    Field-Fote EC; Yang JF; Basso DM; Gorassini MA
    J Neurotrauma; 2017 May; 34(9):1813-1825. PubMed ID: 27673569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical therapy is targeted and adjusted over time for the rehabilitation of locomotor function in acute spinal cord injury interventions in physical and sports therapy.
    Franz M; Richner L; Wirz M; von Reumont A; Bergner U; Herzog T; Popp W; Bach K; Weidner N; Curt A
    Spinal Cord; 2018 Feb; 56(2):158-167. PubMed ID: 29057989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural plasticity after human spinal cord injury: application of locomotor training to the rehabilitation of walking.
    Harkema SJ
    Neuroscientist; 2001 Oct; 7(5):455-68. PubMed ID: 11597104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restoration of walking function in an individual with chronic complete (AIS A) spinal cord injury.
    Manella KJ; Torres J; Field-Fote EC
    J Rehabil Med; 2010 Sep; 42(8):795-8. PubMed ID: 20809063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The evolution of walking-related outcomes over the first 12 weeks of rehabilitation for incomplete traumatic spinal cord injury: the multicenter randomized Spinal Cord Injury Locomotor Trial.
    Dobkin B; Barbeau H; Deforge D; Ditunno J; Elashoff R; Apple D; Basso M; Behrman A; Harkema S; Saulino M; Scott M;
    Neurorehabil Neural Repair; 2007; 21(1):25-35. PubMed ID: 17172551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between ASIA examination and functional outcomes in the NeuroRecovery Network Locomotor Training Program.
    Buehner JJ; Forrest GF; Schmidt-Read M; White S; Tansey K; Basso DM
    Arch Phys Med Rehabil; 2012 Sep; 93(9):1530-40. PubMed ID: 22920450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity-based therapy for recovery of walking in chronic spinal cord injury: results from a secondary analysis to determine responsiveness to therapy.
    Jones ML; Evans N; Tefertiller C; Backus D; Sweatman M; Tansey K; Morrison S
    Arch Phys Med Rehabil; 2014 Dec; 95(12):2247-52. PubMed ID: 25102385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rehabilitation Strategies after Spinal Cord Injury: Inquiry into the Mechanisms of Success and Failure.
    Côté MP; Murray M; Lemay MA
    J Neurotrauma; 2017 May; 34(10):1841-1857. PubMed ID: 27762657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical relevance of gait research applied to clinical trials in spinal cord injury.
    Ditunno J; Scivoletto G
    Brain Res Bull; 2009 Jan; 78(1):35-42. PubMed ID: 18848865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasticity of the spinal neural circuitry after injury.
    Edgerton VR; Tillakaratne NJ; Bigbee AJ; de Leon RD; Roy RR
    Annu Rev Neurosci; 2004; 27():145-67. PubMed ID: 15217329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasticity of corticospinal neural control after locomotor training in human spinal cord injury.
    Knikou M
    Neural Plast; 2012; 2012():254948. PubMed ID: 22701805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Locomotor training after human spinal cord injury: a series of case studies.
    Behrman AL; Harkema SJ
    Phys Ther; 2000 Jul; 80(7):688-700. PubMed ID: 10869131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategies to augment volitional and reflex function may improve locomotor capacity following incomplete spinal cord injury.
    Leech KA; Kim HE; Hornby TG
    J Neurophysiol; 2018 Mar; 119(3):894-903. PubMed ID: 29093168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spinal cord control of movement: implications for locomotor rehabilitation following spinal cord injury.
    Field-Fote EC
    Phys Ther; 2000 May; 80(5):477-84. PubMed ID: 10792858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study.
    Aach M; Cruciger O; Sczesny-Kaiser M; Höffken O; Meindl RCh; Tegenthoff M; Schwenkreis P; Sankai Y; Schildhauer TA
    Spine J; 2014 Dec; 14(12):2847-53. PubMed ID: 24704677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rehabilitation of locomotion after spinal cord injury.
    van Hedel HJ; Dietz V
    Restor Neurol Neurosci; 2010; 28(1):123-34. PubMed ID: 20086289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repetitive Intermittent Hypoxia and Locomotor Training Enhances Walking Function in Incomplete Spinal Cord Injury Subjects: A Randomized, Triple-Blind, Placebo-Controlled Clinical Trial.
    Navarrete-Opazo A; Alcayaga J; Sepúlveda O; Rojas E; Astudillo C
    J Neurotrauma; 2017 May; 34(9):1803-1812. PubMed ID: 27329506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Locomotor training for walking after spinal cord injury.
    Mehrholz J; Kugler J; Pohl M
    Cochrane Database Syst Rev; 2012 Nov; 11():CD006676. PubMed ID: 23152239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of robotic walking therapy and conventional walking therapy in individuals with upper versus lower motor neuron lesions: a randomized controlled trial.
    Esclarín-Ruz A; Alcobendas-Maestro M; Casado-Lopez R; Perez-Mateos G; Florido-Sanchez MA; Gonzalez-Valdizan E; Martin JL
    Arch Phys Med Rehabil; 2014 Jun; 95(6):1023-31. PubMed ID: 24393781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery from spinal cord injury--underlying mechanisms and efficacy of rehabilitation.
    Dietz V; Colombo G
    Acta Neurochir Suppl; 2004; 89():95-100. PubMed ID: 15335107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.