BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 27676095)

  • 1. Design and Synthesis of New Cell Penetrating Peptides: Diffusion and Distribution Inside the Cornea.
    Pescina S; Sala M; Padula C; Scala MC; Spensiero A; Belletti S; Gatti R; Novellino E; Campiglia P; Santi P; Nicoli S; Ostacolo C
    Mol Pharm; 2016 Nov; 13(11):3876-3883. PubMed ID: 27676095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Re-evaluating the role of strongly charged sequences in amphipathic cell-penetrating peptides: a fluorescence study using Pep-1.
    Henriques ST; Costa J; Castanho MA
    FEBS Lett; 2005 Aug; 579(20):4498-502. PubMed ID: 16083883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A peptide carrier for the delivery of elastin into fibroblast cells.
    Nasrollahi SA; Fouladdel S; Taghibiglou C; Azizi E; Farboud ES
    Int J Dermatol; 2012 Aug; 51(8):923-9. PubMed ID: 22788807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell penetrating peptides in ocular drug delivery: State of the art.
    Pescina S; Ostacolo C; Gomez-Monterrey IM; Sala M; Bertamino A; Sonvico F; Padula C; Santi P; Bianchera A; Nicoli S
    J Control Release; 2018 Aug; 284():84-102. PubMed ID: 29913221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring Cell-Penetrating Peptides as Penetration Enhancers in Eye Drop Formulations Using a Reconstructed Human Corneal Epithelial Model.
    Morofuji R; Enomoto H; Honda T; Oyama Y; Ishida R; Kudo K; Okabe K
    Biol Pharm Bull; 2023; 46(12):1720-1730. PubMed ID: 38044130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular uptake but low permeation of human calcitonin-derived cell penetrating peptides and Tat(47-57) through well-differentiated epithelial models.
    Tréhin R; Krauss U; Beck-Sickinger AG; Merkle HP; Nielsen HM
    Pharm Res; 2004 Jul; 21(7):1248-56. PubMed ID: 15290867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and Ex Vivo Trans-Corneal Permeation of Penetratin Analogues as Ophthalmic Carriers: Preliminary Results.
    Pescina S; Sala M; Scala MC; Santi P; Padula C; Campiglia P; Ostacolo C; Nicoli S
    Pharmaceutics; 2020 Aug; 12(8):. PubMed ID: 32756470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Penetratin, a potentially powerful absorption enhancer for noninvasive intraocular drug delivery.
    Liu C; Tai L; Zhang W; Wei G; Pan W; Lu W
    Mol Pharm; 2014 Apr; 11(4):1218-27. PubMed ID: 24521351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of pH and penetration enhancers on cysteamine stability and trans-corneal transport.
    Pescina S; Carra F; Padula C; Santi P; Nicoli S
    Eur J Pharm Biopharm; 2016 Oct; 107():171-9. PubMed ID: 27395395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and characterization of novel protein-derived arginine-rich cell-penetrating peptides.
    Gautam A; Sharma M; Vir P; Chaudhary K; Kapoor P; Kumar R; Nath SK; Raghava GP
    Eur J Pharm Biopharm; 2015 Jan; 89():93-106. PubMed ID: 25459448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vesicles mimicking normal and cancer cell membranes exhibit differential responses to the cell-penetrating peptide Pep-1.
    Almarwani B; Phambu EN; Alexander C; Nguyen HAT; Phambu N; Sunda-Meya A
    Biochim Biophys Acta Biomembr; 2018 Jun; 1860(6):1394-1402. PubMed ID: 29621495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescent sterols monitor cell penetrating peptide Pep-1 mediated uptake and intracellular targeting of cargo protein in living cells.
    Petrescu AD; Vespa A; Huang H; McIntosh AL; Schroeder F; Kier AB
    Biochim Biophys Acta; 2009 Feb; 1788(2):425-41. PubMed ID: 18992218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of cell-penetrating peptide fragments by disulfide formation.
    Tooyserkani R; Lipiński W; Willemsen B; Löwik DWPM
    Amino Acids; 2020 Aug; 52(8):1161-1168. PubMed ID: 32737661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions of amphipathic CPPs with model membranes.
    Deshayes S; Konate K; Aldrian G; Heitz F; Divita G
    Methods Mol Biol; 2011; 683():41-56. PubMed ID: 21053121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Translocation or membrane disintegration? Implication of peptide-membrane interactions in pep-1 activity.
    Henriques ST; Castanho MA
    J Pept Sci; 2008 Apr; 14(4):482-7. PubMed ID: 18181239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear targeted delivery of macromolecules to retina and cornea.
    Binder C; Read SP; Cashman SM; Kumar-Singh R
    J Gene Med; 2011 Mar; 13(3):158-70. PubMed ID: 21344542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designing and enhancing the antifungal activity of corneal specific cell penetrating peptide using gelatin hydrogel delivery system.
    Amit C; Muralikumar S; Janaki S; Lakshmipathy M; Therese KL; Umashankar V; Padmanabhan P; Narayanan J
    Int J Nanomedicine; 2019; 14():605-622. PubMed ID: 30697045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, synthesis and characterization of a new anionic cell-penetrating peptide: SAP(E).
    Martín I; Teixidó M; Giralt E
    Chembiochem; 2011 Apr; 12(6):896-903. PubMed ID: 21365733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discerning the composition of penetratin for safe penetration from cornea to retina.
    Jiang K; Gao X; Shen Q; Zhan C; Zhang Y; Xie C; Wei G; Lu W
    Acta Biomater; 2017 Nov; 63():123-134. PubMed ID: 28927928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning the p
    Xia MC; Cai L; Yang Y; Zhang S; Zhang X
    Anal Chem; 2019 Jul; 91(14):9168-9173. PubMed ID: 31251035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.