These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 27676459)

  • 1. Scalable Production of Sensor Arrays Based on High-Mobility Hybrid Graphene Field Effect Transistors.
    Gao Z; Kang H; Naylor CH; Streller F; Ducos P; Serrano MD; Ping J; Zauberman J; Rajesh ; Carpick RW; Wang YJ; Park YW; Luo Z; Ren L; Johnson ATC
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):27546-27552. PubMed ID: 27676459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scalable Production of High-Sensitivity, Label-Free DNA Biosensors Based on Back-Gated Graphene Field Effect Transistors.
    Ping J; Vishnubhotla R; Vrudhula A; Johnson AT
    ACS Nano; 2016 Sep; 10(9):8700-4. PubMed ID: 27532480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of Ultrasensitive Field-Effect Transistor DNA Biosensors by a Directional Transfer Technique Based on CVD-Grown Graphene.
    Zheng C; Huang L; Zhang H; Sun Z; Zhang Z; Zhang GJ
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):16953-9. PubMed ID: 26203889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Mobility of Graphene-Based Flexible Transparent Field Effect Transistors Doped with TiO2 and Nitrogen-Doped TiO2.
    Wu YH; Tseng PY; Hsieh PY; Chou HT; Tai NH
    ACS Appl Mater Interfaces; 2015 May; 7(18):9453-61. PubMed ID: 25905566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold nanoparticles-decorated graphene field-effect transistor biosensor for femtomolar MicroRNA detection.
    Cai B; Huang L; Zhang H; Sun Z; Zhang Z; Zhang GJ
    Biosens Bioelectron; 2015 Dec; 74():329-34. PubMed ID: 26159152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transfer printing of CVD graphene FETs on patterned substrates.
    Abhilash TS; De Alba R; Zhelev N; Craighead HG; Parpia JM
    Nanoscale; 2015 Sep; 7(33):14109-13. PubMed ID: 26242482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scalable Production of Molybdenum Disulfide Based Biosensors.
    Naylor CH; Kybert NJ; Schneier C; Xi J; Romero G; Saven JG; Liu R; Johnson AT
    ACS Nano; 2016 Jun; 10(6):6173-9. PubMed ID: 27227361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosensor Based on Graphene Directly Grown by MW-PECVD for Detection of COVID-19 Spike (S) Protein and Its Entry Receptor ACE2.
    Meškinis Š; Gudaitis R; Vasiliauskas A; Guobienė A; Jankauskas Š; Stankevič V; Keršulis S; Stirkė A; Andriukonis E; Melo W; Vertelis V; Žurauskienė N
    Nanomaterials (Basel); 2023 Aug; 13(16):. PubMed ID: 37630958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scalable Arrays of Chemical Vapor Sensors Based on DNA-Decorated Graphene.
    Ping J; Johnson ATC
    Methods Mol Biol; 2019; 2027():163-170. PubMed ID: 31309480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Doping free transfer of graphene using aqueous ammonia flow.
    Hassanpour Amiri M; Heidler J; Hasnain A; Anwar S; Lu H; Müllen K; Asadi K
    RSC Adv; 2020 Jan; 10(2):1127-1131. PubMed ID: 35494438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Top-gated graphene field-effect transistors with high normalized transconductance and designable dirac point voltage.
    Xu H; Zhang Z; Xu H; Wang Z; Wang S; Peng LM
    ACS Nano; 2011 Jun; 5(6):5031-7. PubMed ID: 21528892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gold nanoparticle-mediated non-covalent functionalization of graphene for field-effect transistors.
    Shin D; Kim HR; Hong BH
    Nanoscale Adv; 2021 Mar; 3(5):1404-1412. PubMed ID: 36132857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasensitive label-free detection of PNA-DNA hybridization by reduced graphene oxide field-effect transistor biosensor.
    Cai B; Wang S; Huang L; Ning Y; Zhang Z; Zhang GJ
    ACS Nano; 2014 Mar; 8(3):2632-8. PubMed ID: 24528470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High yield fabrication of chemically reduced graphene oxide field effect transistors by dielectrophoresis.
    Joung D; Chunder A; Zhai L; Khondaker SI
    Nanotechnology; 2010 Apr; 21(16):165202. PubMed ID: 20348593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward 300 mm wafer-scalable high-performance polycrystalline chemical vapor deposited graphene transistors.
    Rahimi S; Tao L; Chowdhury SF; Park S; Jouvray A; Buttress S; Rupesinghe N; Teo K; Akinwande D
    ACS Nano; 2014 Oct; 8(10):10471-9. PubMed ID: 25198884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Creation of reduced graphene oxide based field effect transistors and their utilization in the detection and discrimination of nucleoside triphosphates.
    Yu C; Chang X; Liu J; Ding L; Peng J; Fang Y
    ACS Appl Mater Interfaces; 2015 May; 7(20):10718-26. PubMed ID: 25946520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrahigh Responsivity in Graphene-ZnO Nanorod Hybrid UV Photodetector.
    Dang VQ; Trung TQ; Kim DI; Duy le T; Hwang BU; Lee DW; Kim BY; Toan le D; Lee NE
    Small; 2015 Jul; 11(25):3054-65. PubMed ID: 25703808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile fabrication of flexible graphene FETs by sunlight reduction of graphene oxide.
    Ma JN; He Y; Liu Y; Han DD; Liu YQ; Mao JW; Jiang HB; Zhang YL
    Opt Lett; 2017 Sep; 42(17):3403-3406. PubMed ID: 28957048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing the electrical properties of a flexible transparent graphene-based field-effect transistor using electropolished copper foil for graphene growth.
    Tsai LW; Tai NH
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10489-96. PubMed ID: 24922088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-doped graphene field-effect transistors with enhanced electron mobility and air-stability.
    Xu W; Lim TS; Seo HK; Min SY; Cho H; Park MH; Kim YH; Lee TW
    Small; 2014 May; 10(10):1999-2005. PubMed ID: 24616289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.